Thermoelasticity of phase D and implications for low-velocity anomalies and local discontinuities at the uppermost lower mantle

Shangqin Hao1,2, Dapeng Yang1,3, Wenzhong Wang1,3, Fan Zou1, Zhongqing Wu1,3,4*

1Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China

2Now at Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA

3National Geophysical Observatory at Mengcheng, University of Science and Technology of China, Hefei, China

4CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, China

*Correspondences and requests for materials should be addressed to Zhongqing Wu (wuzq10@ustc.edu.cn)
Abstract

The distribution of water reservoirs in the deep Earth is critical to understanding geochemical evolution and mantle dynamics. Phase D is a potential water carrier in the slab subducted to the uppermost lower mantle (ULM) and its seismic velocity and density characteristics are important for seismological detection on water reservoirs, but these properties remain poorly constrained. Here we calculate the seismic velocities and density of Mg-endmember phase D (MgSi$_2$H$_2$O$_6$) under the ULM conditions using first-principles calculations based on the density functional theory. The velocities of phase D are higher than those of periclase and slightly lower than those of bridgmanite by 0.5–3.4% for V_p and by 0–1.9% for V_S between 660- and 1000-km depths. Considering its relatively low content, phase D can hardly produce a low-velocity anomaly in the ULM observed by seismological studies. However, due to its strong elastic anisotropy, it may contribute significantly to the observed seismic anisotropy at a similar depth. Additionally, phase D dehydrates into bridgmanite and stishovite at the ULM, producing insignificant velocity changes but a substantial density increase of ~14%. Therefore, the dehydration is probably too weak to generate discontinuities associated with velocity jumps, whereas it may account for seismic discontinuities that are sensitive to impedance changes, and particularly density jumps, near the dehydration depth observed in some subduction zones.

Keywords: Phase D, dense hydrous magnesium silicate, high-pressure phase transition, dehydration, impedance jump, seismic discontinuity
1. Introduction

Water in the Earth’s interior exerts significant influences on geochemical evolution and mantle dynamics because a small amount of water can significantly change the rheological properties, melting temperature, diffusion rate of materials, and phase stability (Hirschmann, 2006; Karato and Jung, 2010; Mei and Kohlstedt, 2000). For example, water can reduce both viscosity and solidus temperature of mantle rocks, which significantly influences the pattern and velocity of mantle flow. It has been shown that wadsleyite and ringwoodite, candidate nominally anhydrous minerals in the mantle transition zone (MTZ), could incorporate several weight percent of \(H_2O \) (Bell and Rossman, 1992; Inoue et al., 2010; Inoue et al., 1995; Jacobsen et al., 2005; Smyth, 1987), whilst the hydrous ringwoodite and ice-VII discovered in superdeep diamonds (Pearson et al., 2014; Tschauer et al., 2018) provide direct evidence for the existence of the non-negligible amount of \(H_2O \) in the deep mantle. Water can be likely transported into the MTZ and the lower mantle via subducting slabs through the formation and dehydration of dense hydrous magnesium silicates (DHMSs) (Angel et al., 2001). Some geophysical anomalies, such as high \(V_p/V_s \), high electrical conductivity, and low-velocity anomalies, were interpreted as locally high water content released by the dehydration of DHMSs (Karato, 2011; Li et al., 2013; Savage, 2012) or merely their existence owing to their low-velocity characteristics (Liu et al., 2016; Schmandt et al., 2014; Yang et al., 2017). Meanwhile, the generation/breakdown of DHMSs could also cause considerable impedance contrasts, giving rise to seismic discontinuities. For example, the decomposition of a
small amount of superhydrous phase B may contribute to the 800-km discontinuity in western Pacific subduction zones (Yang et al., 2017), and the dehydration of phase H could produce significant seismic impedance increase in the mid-mantle (Song et al., 2022). Combining these seismological observations with the velocity and density characteristics, phase transitions, and corresponding impedance contrasts of DHMSs could help constrain the water content in the deep interior and provide insights into the circulation of water in the whole Earth.

Phase D is considered as a significant carrier of water in slabs subducted to the uppermost lower mantle (ULM). The ideal chemical formula of phase D is MgSi$_2$H$_2$O$_6$ containing 10 wt.% water, whereas the synthesized phase D shows a wide variation in Mg/Si ratio from 0.53 to 0.71 and the water content varies from 10 wt.% to 18 wt.% (Chang et al., 2013; Frost and Fei, 1999; Hushur et al., 2011; Litasov et al., 2007; Rosa et al., 2013a; Rosa et al., 2012; Shinmei et al., 2008; Wu et al., 2016; Xu et al., 2020; Xu et al., 2021b; Yang et al., 1997). Many hydrous phases exhibit low velocities (Li et al., 2016; Mao et al., 2012; Rosa et al., 2012; Rosa et al., 2015; Yang et al., 2017) and could be identified by seismic observations. The weight fraction of phase D can be as high as 57% in hydrous peridotite (Ohtani et al., 2004), which is also possible to generate seismic velocity anomalies in the MTZ and the ULM. On the other hand, phase D will dehydrate into bridgmanite and stishovite at low temperatures at the ULM (Nishi et al., 2014). Correspondingly, many seismic studies detected discontinuities exhibiting large impedance contrasts at the ULM in subduction zones (Courtier and Revenaugh, 2008; Schumacher and Thomas, 2016;
Waszek et al., 2018). The overlap of these depths may suggest a connection between these discontinuities and the dehydration of phase D. However, the velocities and density of phase D under the lower mantle conditions, which are crucial for deciphering its role in such seismic observations, remain unknown.

The crystal structure and equation of state of phase D have been widely studied (Frost and Fei, 1998; Frost and Fei, 1999; Hushur et al., 2011; Kudoh et al., 1997; Litasov et al., 2007; Liu, 1987; Liu et al., 1998; Rosa et al., 2013a; Rosa et al., 2012; Shieh et al., 2009; Shinmei et al., 2008; Wu et al., 2016; Xue et al., 2008; Yang et al., 1997) and the elastic properties of Mg-endmember phase D were investigated by first-principles calculations at static conditions (Mainprice et al., 2007; Thompson et al., 2022; Tsuchiya and Tsuchiya, 2008) and Brillouin scattering and ultrasonic measurements at ambient conditions (Liu et al., 2004; Rosa et al., 2012; Xu et al., 2021b). The sound velocities of Al-bearing phase D up to 22 GPa and 1300 K were also determined by ultrasonic measurements (Xu et al., 2020). However, there are no elasticity data of Mg-endmember phase D under both high-temperature and high-pressure conditions, which are crucial to understanding its characteristics and constraining its distribution. In this contribution, we obtained the elastic properties of Mg-endmember phase D (MgSi$_2$H$_2$O$_6$) and its velocity and density characteristics under the lower mantle conditions using first-principles calculations within the generalized gradient approximation. Combining our results with available data of other minerals, we calculated the velocity and impedance contrasts caused by its dehydration and discussed its close relationship to seismic observations in the ULM.
2. Computational Detail

The Mg-endmember phase D (MgSi$_2$H$_2$O$_6$) is trigonal and in the P$\overline{3}$1m space

The H–O bonds of phase D are located between adjacent octahedra in the

MgO$_6$ layer and the hydrogens are only 1/3 occupied (Xue et al., 2008; Yang et al., 1997). To maintain the symmetries of phase D and handle the fractional occupancy of

H atoms, instead of using a triclinic unit cell as the one in Tsuchiya et al. (2005), we

constructed a super cell following Mainprice et al. (2007) (Figure 1). The basic vector

(a, b, c) in this super cell is equal to (a-b, a+2b, c) in the unit cell, so it consists of 3

unit cells (33 atoms) and has a slightly different space group, P$\overline{3}$m1.

All calculations in this study were performed based on the density functional

theory (DFT) using the open-source quantum espresso package (Giannozzi et al., 2009) with the Generalized Gradient Approximation (GGA) (Hamann, 1997; Perdew et al., 1996). The energy cutoff for the plane wave was set to 70 Ry. Structural

optimizations were performed using the variable cell-shape damped molecular

dynamics method (Wentzcovitch et al., 1993) at certain pressures with a k-point mesh

of 6×6×6.

Isothermal elastic constants can be expressed as (Barron and Klein, 1965)

$$c_{ijkl}^T = \frac{1}{V} \left(\frac{\partial^2 F}{\partial \epsilon_i \partial \epsilon_k} \right) + \frac{1}{2} P \left(2 \delta_{ij} \delta_{kl} - \delta_{ik} \delta_{lj} - \delta_{ij} \delta_{kl} \right), \quad (1)$$

where V, T, P, ϵ_{ij}, δ_{ij}, and F represent the volume, temperature, pressure, infinitesimal strain, Kronecker delta, and Helmholtz free energy, respectively.

Adiabatic elastic constants can be further calculated by
\[
\mathcal{C}_{ijkl}^S = \mathcal{C}_{ijkl}^T + \frac{T}{V_cV} \frac{\partial S}{\partial e_{ij}} \delta_{ij} \frac{\partial S}{\partial e_{kl}} \delta_{kl},
\]
(2)

where \(S \) and \(C_V \) represent the entropy and isochoric heat capacity, respectively.

According to equation (1), Helmholtz free energy \(F \) is required to obtain these elastic constants, which, in quasi-harmonic approximation, is expressed as

\[
F(V, T, e_{ij}) = U_0(V, e_{ij}) + \sum_{q, m} \frac{\hbar \omega_{qm(V, e_{ij})}}{2} + k_B T \sum_{q, m} \ln \{1 - \exp[-\frac{\hbar \omega_{qm(V, e_{ij})}}{k_B T}]\}.
\]
(3)

The three terms on the right side are static internal, zero point, and vibrational energy, where \(k_B \) and \(\hbar \) are Boltzmann and reduced Planck constants, respectively, and \(\omega_{qm} \) is the vibrational frequency. Equation (1) and (3) suggest that the determination of all elastic constants requires the computation of vibrational frequencies, \(\omega_{qm} \), for many (~10) strained configurations, which is computationally demanding. To address this challenge, we employ the semi-analytical method developed by Wu and Wentzcovitch (2011) to calculate the thermal elasticity of phase D, which requires only the computation of vibrational frequencies under the unstrained condition and static elastic constants. The static elastic constants were calculated according to the stress-strain relationship with \(\pm 1\% \) strain. The dynamical matrices with a \(4 \times 4 \times 4 \) q-point mesh were calculated using density functional perturbation theory (Baroni et al., 2001) and further interpolated in a denser mesh to obtain the vibrational density of state. This method accelerates the computational efficiency by approximately tenfold while maintaining high accuracy, and it has been successfully applied to numerous minerals (Hao et al., 2019; Qian et al., 2018; Wang et al., 2020; Wang et al., 2019; Wu and Wang, 2016; Yang et al., 2017; Yao et al., 2018; Zou et al., 2018).
pressure, we calculate the volume and corresponding vibrational frequencies under
the unstrained condition, which are utilized to compute the Helmholtz free energy at
different temperatures and volumes based on Equation (3). Finally, we apply the semi-
analytical method developed by Wu and Wentzcovitch (2011) to calculate the
adiabatic elastic constants.

3. Results

3.1 Absent H-bond symmetrization in optimized structures

Previous theoretical studies (Thompson et al., 2022; Tsuchiya and Tsuchiya,
2008; Tsuchiya et al., 2005) predicted that the hydrogen bond symmetrization (HBS)
(the H atom is located at the middle point of two neighboring O atoms) takes place in
phase D at the pressure of approximately 40 GPa, causing a ~20% increase in the bulk
modulus. However, HBS is absent in the optimized structures up to 80 GPa in both
Mainprice et al. (2007) and our study (Figure 1c) and neither of the studies shows an
abrupt increase in the bulk modulus (see Section 3.3). The discrepancy is probably
caused by different structural models of phase D related to the fractional occupancy of
hydrogen, as discussed in Tsuchiya and Tsuchiya (2008). The structures of Mg-
endmember phase D in their studies are unit cells, where H atoms occupy 2 of 6 sites,
thus the structure distorts from trigonal and has a triclinic unit cell, whereas we use a
triple cell to keep the symmetry.

Despite this discrepancy, infrared spectroscopic studies on phase D
(Mg_{2.23}Si_{1.18}H_{2.80}O_6) observe neither significant changes in the frequency or intensity
of OH stretching vibrations nor the merging of the separate OH peaks with increasing pressure up to 42 GPa (Shieh et al., 2009). In a recent study, Meier et al. (2022) suggest that the minima in the pressure dependence of the NMR resonance line-widths of Al- and Fe-bearing phase D (\(\text{Mg}_{0.88}\text{Fe}_{0.12}\text{Si}_{0.9}\text{Al}_{0.1}\)O\(_6\)H\(_2\)), which represents the maximum in hydrogen mobility, can be regarded as the precursor to HBS. However, based on first principles calculations, Thompson et al. (2022) suggest that phase D with 50% Al-substitution (AlMg\(_{0.5}\)Si\(_{1.5}\)O\(_6\)H\(_2\)), containing 8 unit cells in their setting, does not show HBS in the pressure range of 0–75 GPa, whereas both Mg- and Al-endmember phase D, containing one and two unit cells respectively, undergo pressure-induced HBS. The discrepancy in experiments and calculations suggests that whether HBS is present could be affected by both the structural models and compositions of phase D. Our results provide the optimized structures of Mg-endmember phase D based on the super-cell configuration and corresponding elastic properties at high temperatures, which can be combined with prior results to explore the effect of cell setting and Al content on the elasticity of phase D.

3.2 Thermodynamic Properties

The calculated equations of state of phase D are shown together with the experimental results in Figure 2. The differences among experiments primarily result from the wide variations in Mg/Si ratio, aluminum and water contents in the synthesized phase D. Except the Al-bearing phase D (Xu et al., 2020), most measured volumes (Frost and Fei, 1999; Hushur et al., 2011; Ohtani et al., 2004; Rosa et al.,
2013a; Rosa et al., 2012; Rosa et al., 2013b; Shinmei et al., 2008; Wu et al., 2016; Xu et al., 2021b; Yang et al., 2017) are slightly smaller than our calculated results due to the overestimation of GGA calculation, but there is much better consistency in the relative change of volume (V/V_0) with pressure (Figure 2c). Our calculated volumes lie between the experimental data of Shinmei et al. (2008) and Wu et al. (2016) within a broad pressure range and agree with those of Rosa et al. (2013a) at all pressures (Figure 2c). Furthermore, the calculated relative changes in cell parameters are also consistent with the experimental results. In comparison with the absolute values at different pressures, the relative changes in volume (V/V_0) and lattice constants ($a/a_0, c/c_0$) play a more important role in the determination of the compressional properties.

The calculated thermal expansion ($\alpha = \frac{1}{V} \frac{\partial V}{\partial T}$) of phase D as well as the experimental data (Shinmei et al., 2008) are shown in Figure 3a. The blue dashed line represents the experimental results at 0 GPa (Shinmei et al., 2008), which are larger than our calculated results. The thermal expansion of Shinmei et al. (2008) was calculated using high-temperature Birch-Murnaghan equation of state (HTBM EOS) based on the P-V-T data of phase D. It should be noted that there are only two room-temperature volume data points at ambient pressure in their study, whereas most of the data were measured at 17-46 GPa. Therefore, the thermal expansion of phase D at high pressures should be more convincing than that at 0 GPa, and these high-pressure data do agree better with our calculated results (Figure 3a). The calculated thermal Grüneisen parameter, $\gamma_{th} = V \left(\frac{\partial P}{\partial U} \right)_V$ (U is the internal energy), decreases with pressure (Figure 3b). The heat capacity at constant volume ($C_V = \left(\frac{\partial U}{\partial T} \right)_V$) and constant
pressure \(C_p = \left(\frac{\partial H}{\partial T} \right)_p \) (H is the enthalpy) increase significantly with temperature but slightly decreases with pressure (Figure 3c-d).

3.3 Thermal Elastic Properties

The elastic tensor of phase D with a trigonal symmetry can be totally determined by six independent elastic constants \((C_{11}, C_{33}, C_{12}, C_{13}, C_{44}, \text{ and } C_{14}) \). The calculated thermal elastic constants, adiabatic bulk \((K_S) \) and shear \((G) \) moduli, longitudinal \((V_p) \) and shear wave \((V_S) \) velocities as well as the experimental data (Rosa et al., 2012; Xu et al., 2020; Xu et al., 2021b) are shown in Figure 4. The first and second derivatives of elastic moduli \(M = C_{ij}, K_S, \text{ and } G \) with respect to pressure and temperature are shown in Table S1 and Table S2, respectively. The calculated compressional elastic constants \((C_{11} \text{ and } C_{33}) \) and shear elastic constant \((C_{44}) \) are slightly larger than the experimental results (Rosa et al., 2012), whereas the off-diagonal elastic constants \((C_{12}, C_{13}, \text{ and } C_{14}) \) are slightly smaller (Figure 4). Since there are no high-pressure experimental data of elastic constants of phase D, we compared the linear compressibility calculated from our elastic constants with that from the lattice constants of experimental data and they exhibit good consistency (Text S1; Figure S1).

The adiabatic bulk moduli \((K_S) \) are in good agreement with the experimental results of Rosa et al. (2012) and slightly larger than that of Xu et al. (2020) and Xu et al. (2021b), but our shear moduli \((G) \) are significantly larger than all experiments, particularly Xu et al. (2021b) (Figure 4c). The deviations probably result from different Al and H\(_2\)O contents in phase D. Phase D in this study contains 10 wt.%
H$_2$O, whereas the synthesized samples in Rosa et al. (2012) and Xu et al. (2021b) include 12.1 and 16.1 wt.% H$_2$O, respectively, and the sample in Xu et al. (2020) contains 18.8 wt.% Al$_2$O$_3$ and ~16.0 wt.% H$_2$O. The negative correlation between the H$_2$O content and elastic moduli is consistent with many minerals, such as wadsleyite and ringwoodite (Wang et al., 2020; Wang et al., 2019), but the effect of aluminum content on the elastic moduli of phase D requires further investigation. Since the density of phase D in this study is close to these experiments and the compressional and shear wave velocities are expressed by $V_p = \sqrt{\left(K_S + \frac{4}{3}G\right)/\rho}$ and $V_S = \sqrt{G/\rho}$, the larger shear moduli further lead to higher velocities (Figure 4d). The V_p and V_S of phase D in this study are 3.0% and 5.8% larger than those in Rosa et al. (2012) at ambient conditions and approximately 4–6% and 8–9% larger than that in Xu et al. (2021b) at pressures of 3–13.6 GPa, respectively.

Our results do not show the abrupt increase in the bulk modulus of phase D up to 80 GPa, which disagrees with the result of Tsuchiya et al. (2005). They attribute the jump of bulk modulus to HBS at approximately 40 GPa, whereas the absent HBS in this study, which are probably caused by different cell settings as discussed in Section 3.1, does not cause such a jump. Among experimental results, the dramatic increase in bulk modulus observed by Hushur et al. (2011) probably results from the assumption of a fixed K'_0 (the pressure derivative of the bulk modulus at 0 GPa) of 4, whereas Rosa et al. (2012), Xu et al. (2020) and this study obtain a value close to or larger than 5 (Table S1). The large K'_0 can fit the equation of states well without an abrupt increase in bulk modulus.
3.4 Anisotropy

The elastic wave velocities of single crystal usually exhibit variations along different crystallographic orientations and the single-crystal anisotropy can be defined as in Karki et al. (2001):

\[
A_P = 2 \times \frac{(V_{P,max} - V_{P,min})}{(V_{P,max} + V_{P,min})} \\
A_S = 2 \times \frac{(V_{S,max} - V_{S,min})}{(V_{S,max} + V_{S,min})} \\
A_{S_P} = 2 \times \frac{(V_{S1} - V_{S2})_{max}}{V_{S1} + V_{S2}},
\]

where \(A_P\), \(A_S\) and \(A_{S_P}\) represent the \(V_P\), \(V_S\), and \(V_S\) polarization anisotropies, respectively. \(V_P\), \(V_{S1}\), and \(V_{S2}\) represent the wave velocities along a given crystallographic orientation, which can be calculated using the Christoffel equation (Musgrave, 1970):

\[
|C_{ijkl}n_jn_k - \rho V^2 \delta_{ik}| = 0.
\]

Here \(C_{ijkl}\) refers to the fourth-ranked elastic tensor and the unit vector \(n ((n_1, n_2, n_3))\) is the propagation direction of the elastic wave. \(V\) and \(\rho\) represent velocity and density, respectively.

The S wave polarization anisotropy of phase D is significantly large (approximately 18%) under the conditions of the MTZ and ULM (Figure 5). Rosa et al. (2013b) indicate that phase D exhibits a relatively low strength under uniaxial compression and tends to develop lattice preferred orientations under plastic flow. They also estimated that 16 vol.% of phase D in hydrous subducted peridotite could explain the shear wave splitting (0.9±0.3%) and the shear wave ray polarization geometry observed in a detached fragment of the Tonga slab below the transition zone.
(Chen and Brudzinski, 2003). Our calculated anisotropies of phase D are as strong as those in Rosa et al. (2012) (Figure 5), further corroborating this interpretation.

4. Discussions

4.1 The Velocities and Density Characteristics of Phase D in the MTZ and ULM

Phase D is stable at the lowermost MTZ and the ULM at low temperatures (Nishi et al., 2014). The seismic velocities and density of phase D, ringwoodite, periclase, bridgmanite, and stishovite along a cold geotherm 500 K lower than the normal geotherm (Brown and Shankland, 1981) are shown in Figure 6. Similar to other hydrous phases, phase D has a significantly lower density than all other minerals, especially at the ULM. The density contrast between phase D and bridgmanite is as large as ~13%, thus it could contribute to the stagnation of slabs at the depth of ~600–1000 km (Fukao et al., 2009) to a large extent. The seismic velocities of phase D, however, surpass or are comparable to those of candidate minerals. Phase D shows relatively high velocities in the MTZ, and the velocities of phase D increase faster with pressure than those of candidate minerals in the MTZ and ULM (Figure 6) due to its large pressure derivatives of K_S and G (Table S1). Its V_P and V_S are 1.5–3.0% and 6.5–8.7% higher than those of ringwoodite at depths of 500–660 km, respectively. Although phase D exhibits significantly lower velocities than bridgmanite at ambient conditions as in Rosa et al. (2012), the velocity contrasts between phase D and bridgmanite are not prominent for both V_P (0.5%–3.4%) and V_S (0%–1.9%) within the depth range of 660–1000 km (Figure 6). Moreover, the velocities of phase D are
larger than periclase in the same depth range (Figure 6). Stishovite, one of the
dehydration products of phase D (Nishi et al., 2014) and an important component in
the oceanic crust, has significantly high velocities in the MTZ (Karki et al., 2001;
Yang and Wu, 2014; Zhang et al., 2021). The velocity contrasts between phase D and
stishovite are 11.1–13.1% for V_P and 10.2–12.7% for V_S at depths of 500–660 km.
However, due to the softening of shear modulus of stishovite (Karki et al., 2001; Yang
and Wu, 2014; Zhang et al., 2021) and the large pressure dependence of velocities of
phase D, the V_P and V_S of stishovite are only 5.6% and 1.6% higher than those of
phase D at 1000-km depth, respectively, which become even smaller at larger depths
(Figure 6).

The comparable velocities of phase D to candidate minerals in the ULM suggest
that the accumulation of phase D can hardly produce prominent low-velocity
anomalies in the ULM observed by some seismological studies (Brudzinski and Chen,
2003; Liu et al., 2016), which is inconsistent with the conclusion drawn at ambient
conditions (Rosa et al., 2012). H$_2$O and Al have a significant effect on the velocities
and density of phase D. The velocities of phase D are negatively correlated with the
H$_2$O content (Figure 4), so a higher H$_2$O content may increase the possibility of
generating low-velocity anomalies, but it still requires more quantitative
investigations on the effect. Xu et al. (2020) used the data of Al-bearing phase D,
which include 18.8 wt.% Al$_2$O$_3$ and ~16.0 wt.% H$_2$O, to calculate the velocities and
density contrasts between the dry and hydrous harzburgite. Their calculation indicates
that the hydrous harzburgite with ~1.2 wt.% H$_2$O exhibits slightly lower velocities at
the ULM, -0.5% and -1.0% for \(V_P \) and \(V_S \) respectively, hardly accounting for the -3% velocity anomalies for both \(V_P \) and \(V_S \) in Tonga slab (Brudzinski and Chen, 2003), although their Al-bearing phase D has lower velocities than the Mg-endmember phase D in our study under such conditions. This calculation provides an approximate estimation on the \(\text{H}_2\text{O} \) effect, that is, such a water content is not enough to cause obvious low-velocity anomalies, but the contribution of Al to the velocities remains to be explored.

In contrast, superhydrous phase B, another stable hydrous mineral in cold slabs in the ULM, may explain these low-velocity observations. It has much lower velocities than bridgmanite and periclase, and the released water by its dehydration at the depth of ~800 km should migrate upwards, causing the partial melt to reduce the velocity at a shallower depth (Yang et al., 2017). However, superhydrous phase B has negligible anisotropy compared with the strong anisotropy of phase D (Figure 5) under such conditions, which cannot explain the observed seismic anisotropy in the same region (Chen and Brudzinski, 2003). Previous studies suggest that phase D and superhydrous phase B are likely to coexist in the ULM at low temperatures (Nishi et al., 2014; Xu et al., 2021a). Therefore, the low-velocity anomaly could be mainly caused by superhydrous phase B, whereas phase D may primarily contribute to the seismic anisotropy.

4.2 The Dehydration of Phase D and Implications on Discontinuities in the ULM

At the ULM, with increasing pressure and temperature, phase D should dehydrate into bridgmanite and stishovite:
\[
\text{MgSi}_2\text{O}_6\text{(phase D)} = \text{MgSiO}_3\text{(bridgmanite)} + \text{SiO}_2\text{(stishovite)} + \text{H}_2\text{O,}
\]

but the transition depth spans a wide range due to its significantly large negative Clapeyron slope (dP/dT) (Nishi et al., 2014). Assuming that the slab is around 400–500 K lower than the normal geotherm (Brown and Shankland, 1981), the dehydration could take place across a broad depth range of approximately 700–1000 km, with potential deviations influenced by uncertainties in the phase boundary (Nishi et al., 2014). The \(V_P\), \(V_S\), and density contrasts between phase D and the aggregate of bridgmanite plus stishovite along a cold isotherm 500 K lower than the normal geotherm are shown in Figure 7. It is expected that the velocity jumps caused by the dehydration of phase D decrease with increasing pressure because the velocities of phase D increase faster with pressure than those of bridgmanite and stishovite and the shear modulus of stishovite soften at high pressures (Karki et al., 2001; Yang and Wu, 2014; Zhang et al., 2021) (Figure 6). The velocity jumps caused by the dehydration of phase D are 5.8% for \(V_P\) and 4.4% for \(V_S\) at 700-km depth but reduce to 2.3% and 0.4% at 1000-km depth, respectively (Figure 7). At deeper depths, the dehydration of phase D even results in a decrease in \(V_S\). In contrast, the density jump caused by the dehydration of phase D is as large as \(\sim 14\%\) at the depth of \(\sim 700–1000\) km. The impedance contrasts (\(\Delta(\rho V)\), where \(\rho\) and \(V\) represent the density and wave velocity, respectively) caused by the dehydration of phase D are 20% and 16% for compressional wave and 19% and 14% for shear wave at 700- and 1000-km depths, respectively, which are comparable to the transformation from olivine to wadsleyite (Núñez Valdez et al., 2013) accounting for the 410-km discontinuity. Such large
impedance contrasts indicate that a small amount of phase D could produce seismically detectable discontinuities at the ULM in subduction zones.

It should be noted that the effects of iron on the elasticity of phase D are not considered above. Previous studies indicate that the iron in Fe-Al-bearing phase D undergoes a high-spin to low-spin transition, which significantly reduce the bulk modulus of phase D (Chang et al., 2013; Wu et al., 2016). The pressure range of the spin transition in Fe-Al-bearing phase D is related to the valence state of iron. The spin transition of Fe$^{2+}$ occurs at 37-41 GPa and the spin transition of Fe$^{3+}$ occurs at 40-65 GPa for \sumFe$^{3+}$/Fe = 0.94 and at 64-68 GPa for \sumFe$^{3+}$/Fe = 0.40 (Chang et al., 2013; Wu et al., 2016). Therefore, the spin transition of Fe$^{2+}$ in phase D and the dehydration of phase D are likely to occur simultaneously near the 1000-km depth if phase D contains a certain amount of Fe$^{2+}$. The spin transition of Fe$^{2+}$ in phase D (Mg$_{0.89}$Fe$_{0.11}$Al$_{0.37}$Si$_{1.55}$H$_{2.65}$O$_6$ \sumFe$^{2+}$/Fe = 0.60) will cause a reduction of 28% on bulk sound velocity and a reduction of 1.7% on volume (Wu et al., 2016). Iron in bridgmanite occupies mainly in the Mg site as Fe$^{2+}$ or Fe$^{3+}$, and the iron does not experience any spin transition over the entire pressure range of the lower mantle. Si site in bridgmanite may contain a small amount of Fe$^{3+}$, and the Fe$^{3+}$ undergoes a spin transition at approximately 15–50 GPa (Lin et al., 2013), whose effect on bulk modulus of bridgmanite is relatively small at relevant mantle conditions (Badro, 2014; Catalli et al., 2011; Catalli et al., 2010; Shukla and Wentzcovitch, 2016). Therefore, the spin transition of Fe$^{2+}$ may significantly increase the V_P jump and slightly decrease the density jump caused by the dehydration of phase D at the depth of ~1000
km. Thus, the compressional impedance contrast caused by the dehydration of Fe-bearing phase D may significantly increase if the Fe$^{2+}$ in phase D undergoes a spin transition.

Besides the global 410-km and 660-km discontinuities, seismological studies detected many local discontinuities in the ULM, especially in subduction zones, and their origins have been widely discussed (Courtier and Revenaugh, 2008; Schumacher and Thomas, 2016; Waszek et al., 2018). These detections are sensitive to the impedance contrasts across discontinuities and the most robust ones are at the depth of ~800 km and ~1000 km, respectively. The dehydration of superhydrous phase B may account for the discontinuities at the depth of ~800 km in subduction zones (Liu et al., 2016; Porritt and Yoshioka, 2016; Yang et al., 2017), but the ones at the depth of ~1000 km were ascribed to various mechanisms including viscosity jump (Marquardt and Miyagi, 2015; Rudolph et al., 2015), mineral phase transitions within subducted slab (King et al., 2015; Kingma et al., 1995), and the impedance contrasts between oceanic crust and other parts of a slab (Niu, 2014; Rost et al., 2008). The dehydration of phase D causes substantial impedance contrasts at the ULM, providing another mechanism for these discontinuities. Most of these discontinuities are roughly located within the fast anomalies in tomography models, that is, subducted slabs, where the dehydration of phase D takes place. The dehydration of phase D at the ULM mainly accounts for discontinuities caused by large impedance contrasts, specifically, density contrast. Therefore, seismic observations which are mainly sensitive to the velocity contrast, such as the S-to-P scatterers beneath the circum-Pacific regions near 1000-
km depth, may not result from the dehydration of phase D, where the presence of oceanic crust is more preferred (Kaneshima, 2019).

5. Implications

In this study, we obtain the elasticity of Mg-endmember phase D at high pressures and high temperatures using first-principles calculations based on the density functional theory with the generalized gradient approximation. Compared with other candidate minerals, the low-density feature of phase D could contribute to the stagnation of slabs at the ULM. On the other hand, phase D has larger pressure derivatives of K and G than those of major minerals in the MTZ and ULM, thus its velocities increase much faster with depth. As a result, unlike other hydrous phases, phase D exhibits higher velocities than ringwoodite at the transition zone and comparable velocities to bridgmanite, periclase, and stishovite in the ULM, respectively. Therefore, the accumulation of phase D is not likely to cause prominent low-velocity anomalies at the ULM. In contrast, superhydrous phase B, another hydrous phase coexisting with phase D at the ULM, may account for the low-velocity anomalies, whereas phase D could explain the shear wave splitting in the same region.

The velocity contrasts caused by the dehydration of phase D into stishovite and bridgmanite are negligible at the ULM, but the impedance contrasts are significantly large because of the large density jump (~14%). Such large impedance contrasts may provide an alternative explanation for the discontinuities at the ULM in subduction regions. The equation of states and elasticity of Mg-endmember phase D obtained in
this study can be combined with other studies with different Al and water contents to explore the effect of composition on these physical properties.

Acknowledgements

This study is supported by the National Natural Science Foundation of China (41925017), and the Fundamental Research Funds for the Central Universities (WK2080000144). The calculations were conducted in the Supercomputing Center of the University of Science and Technology of China. The original data for all the figures are available at the Zenodo database (https://doi.org/10.5281/zenodo.10452880).
Figure 1. (a) (b) Crystal structure of phase D at 0 GPa. The yellow, blue, red, and white balls are Si, Mg, O, and H atoms, respectively. Images were generated in VESTA (Momma and Izumi, 2008). (c) The relationship between the O···O and the O–H distances of phase D in our study, shown in blue, and Tsuchiya et al. (2005), shown in orange. The dashed line represents the relationship of hydrogen bond symmetrization.
Figure 2. (a) The equation of states of phase D, (b) the relative change in volume \((V/V_0) \), and (c) lattice constant \((a/a_0, c/c_0) \) as a function of pressure (this study: static results; experiments: data at 300 K). Solid lines represent our calculation results and the experimental results are shown with scatters. Chemical formulas: MgSi_2H_2O_6 (this study), Mg_{1.11}Si_{1.89}H_{2.22}O_6 (Yang et al., 1997), Mg_{1.14}Si_{1.73}H_{2.81}O_6 (Ohtani et al., 1997), Mg_{1.11}Si_{1.6}H_{3.6}O_6 (Frost and Fei, 1999), Mg_{1.02}Si_{1.73}H_{3.03}O_6 (Shinmei et al., 2008), Mg_{1.0}Si_{1.7}H_{3.0}O_6 (Hushur et al., 2011), Mg_{1.1}Si_{1.9}H_{2.4}O_6 (Rosa et al., 2012), Mg_{1.1}Si_{1.8}H_{2.5}O_6 (Rosa et al., 2013a; Rosa et al., 2013b), Mg_{1.14}Si_{1.73}H_{2.81}O_6 (Wu et al., 2016), Mg_{0.89}Si_{1.30}Al_{0.64}H_{3.10}O_6 (Al-bearing phase D) (Xu et al., 2020), Mg_{1.03}Si_{1.7}H_{3.0}O_6 (Xu et al., 2021b).
Figure 3. (a) thermal expansion, (b) thermal Grüneisen parameter, (c) heat capacity at constant volume, and (d) heat capacity at constant pressures of phase D. Solid lines represent our calculation results at various pressures and dashed lines represent the experimental results from HTBM EOS of phase D reported by Shinmei et al. (2008).
Figure 4. (a and b) elastic constants, (c) bulk modulus and shear modulus, (d) compressional wave velocity, and shear wave velocity of phase D at various pressures and temperatures. Solid lines represent our calculation results and the experimental results are shown with scatters. Chemical formulas: This study, MgSi$_2$H$_2$O$_6$; Rosa12, Mg$_{1.1}$Si$_{1.9}$H$_{2.4}$O$_6$ (Rosa et al., 2012); Xu20+Al, Mg$_{0.89}$Si$_{1.30}$Al$_{0.64}$H$_{3.10}$O$_6$ (Xu et al., 2020); Xu21, Mg$_{1.03}$Si$_{1.71}$H$_{3.05}$O$_6$ (Xu et al., 2021b).
Figure 5. Anisotropy of phase D as a function of pressure. (a) \(A_P \), (b) \(A_S \), and (c) \(A_{Sp} \) of phase D at various pressures and temperatures. Blue circles represent the experimental results at ambient conditions obtained by Rosa et al. (2012).
Figure 6. (a) Compressional wave velocity V_P, (b) shear wave velocity V_S, and (c) densities of phase D (phD) compared to those of iron-free ringwoodite (rw) (Núñez Valdez et al., 2012), stishovite (st) (Yang and Wu, 2014), iron-free bridgmanite (brg) (Shukla et al., 2015) and periclase (pc) (Wu and Wentzcovitch, 2011) along a slab geotherm 500 K lower than the normal mantle geotherm (Brown and Shankland, 1981). The dashed lines show the profiles of the 1D seismic reference model PREM (Dziewonski and Anderson, 1981).
Figure 7. (a) Compressional wave velocity V_P, (b) shear wave velocity V_S, and (c) densities of phase D (phD) and the aggregate of bridgmanite (brg) (Shukla et al., 2015) and stishovite (st) (Yang and Wu, 2014) along the cold isotherm. (d) Impedance contrasts of P and S waves caused by the dehydration of phase D into bridgmanite and stishovite.
References

Inoue, T., Yurimoto, H., Kudoh, Y.J.G.R.L., 1995. Hydrous modified spinel, Mg$_{1.75}$Si$_{0.5}$O$_4$: a new water reservoir in the mantle transition region. 22, 117-120.

Marquardt, H., Miyagi, L.J.N.G., 2015. Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity. 8, 311-314.

Pearson, D.G., Brenker, F.E., Nestola, F., McNeill, J., Nasdala, L., Hutchison, M.T., Matveev, S.,

Shukla, G., Wentzcovitch, R.M., 2016. Spin crossover in $(\text{Mg,Fe}^{3+})(\text{Si,Fe}^{3+})\text{O}_3$ bridgmanite: Effects of disorder, iron concentration, and temperature. Phys Earth Planet In 260, 53-61.

