Crystal chemistry of vesuvianite: Site preferences of square-pyramidal coordinated sites

Makio Ohkawa, Akira Yoshiasa, Setsuo Takeno

For deposit: Tables 5, 6, and 7

American Mineralogist, 77, 9-10, 945-953.
Table 5. Anisotropic thermal parameters ($\times 10^5$) for vesuvianites

1 Sauland (Cu-vesuvianite)

<table>
<thead>
<tr>
<th>Atom</th>
<th>b_{11}</th>
<th>b_{22}</th>
<th>b_{33}</th>
<th>b_{12}</th>
<th>b_{13}</th>
<th>b_{23}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca1</td>
<td>134(5)</td>
<td>98(5)</td>
<td>155(9)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ca2</td>
<td>60(2)</td>
<td>85(2)</td>
<td>104(4)</td>
<td>9(2)</td>
<td>-5(3)</td>
<td>0(3)</td>
</tr>
<tr>
<td>Ca3</td>
<td>85(3)</td>
<td>80(3)</td>
<td>259(5)</td>
<td>15(2)</td>
<td>-42(3)</td>
<td>-24(3)</td>
</tr>
<tr>
<td>C</td>
<td>74(6)</td>
<td>74</td>
<td>224(20)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>45(7)</td>
<td>45</td>
<td>476(27)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AlFe</td>
<td>51(6)</td>
<td>59(6)</td>
<td>89(11)</td>
<td>-4(3)</td>
<td>9(4)</td>
<td>-2(4)</td>
</tr>
<tr>
<td>A</td>
<td>59(5)</td>
<td>49(5)</td>
<td>146(8)</td>
<td>-2(4)</td>
<td>3(5)</td>
<td>12(5)</td>
</tr>
<tr>
<td>Si1</td>
<td>55(4)</td>
<td>55</td>
<td>97(11)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Si2</td>
<td>48(3)</td>
<td>57(3)</td>
<td>91(6)</td>
<td>3(5)</td>
<td>-3(3)</td>
<td>5(3)</td>
</tr>
<tr>
<td>Si3</td>
<td>100(3)</td>
<td>51(3)</td>
<td>84(6)</td>
<td>0(3)</td>
<td>4(3)</td>
<td>-2(3)</td>
</tr>
<tr>
<td>O1</td>
<td>91(8)</td>
<td>63(8)</td>
<td>100(14)</td>
<td>1(7)</td>
<td>6(9)</td>
<td>6(9)</td>
</tr>
<tr>
<td>O2</td>
<td>74(8)</td>
<td>74(8)</td>
<td>152(15)</td>
<td>-3(7)</td>
<td>-40(9)</td>
<td>9(9)</td>
</tr>
<tr>
<td>O3</td>
<td>81(8)</td>
<td>58(8)</td>
<td>99(14)</td>
<td>6(7)</td>
<td>-10(9)</td>
<td>-2(9)</td>
</tr>
<tr>
<td>O4</td>
<td>79(9)</td>
<td>63(8)</td>
<td>109(15)</td>
<td>7(7)</td>
<td>-6(9)</td>
<td>7(9)</td>
</tr>
<tr>
<td>O5</td>
<td>78(9)</td>
<td>118(9)</td>
<td>147(15)</td>
<td>36(7)</td>
<td>16(10)</td>
<td>11(10)</td>
</tr>
<tr>
<td>O6</td>
<td>229(11)</td>
<td>85(9)</td>
<td>156(16)</td>
<td>32(8)</td>
<td>18(11)</td>
<td>35(10)</td>
</tr>
<tr>
<td>O7</td>
<td>83(9)</td>
<td>131(10)</td>
<td>162(15)</td>
<td>17(7)</td>
<td>17(10)</td>
<td>25(10)</td>
</tr>
<tr>
<td>O8</td>
<td>68(8)</td>
<td>73(8)</td>
<td>138(15)</td>
<td>8(7)</td>
<td>23(9)</td>
<td>9(9)</td>
</tr>
<tr>
<td>O9</td>
<td>98(7)</td>
<td>98</td>
<td>107(19)</td>
<td>-15(10)</td>
<td>-4(10)</td>
<td>4</td>
</tr>
<tr>
<td>O10</td>
<td>157(15)</td>
<td>157</td>
<td>464(42)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O11</td>
<td>106(9)</td>
<td>102(9)</td>
<td>148(16)</td>
<td>-3(7)</td>
<td>-11(9)</td>
<td>-3(8)</td>
</tr>
</tbody>
</table>
Table 5. (cont.)

2 Sanpo

<table>
<thead>
<tr>
<th>Atom</th>
<th>β_{11}</th>
<th>β_{22}</th>
<th>β_{33}</th>
<th>β_{12}</th>
<th>β_{13}</th>
<th>β_{23}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca1</td>
<td>118(5)</td>
<td>66(5)</td>
<td>103(8)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ca2</td>
<td>59(2)</td>
<td>84(2)</td>
<td>131(5)</td>
<td>7(2)</td>
<td>-7(3)</td>
<td>1(3)</td>
</tr>
<tr>
<td>Ca3</td>
<td>93(3)</td>
<td>88(3)</td>
<td>277(5)</td>
<td>19(2)</td>
<td>-47(3)</td>
<td>-22(3)</td>
</tr>
<tr>
<td>C</td>
<td>87(7)</td>
<td>87</td>
<td>394(24)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>60(5)</td>
<td>60</td>
<td>833(28)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AlFe</td>
<td>76(3)</td>
<td>60(3)</td>
<td>109(6)</td>
<td>-8(2)</td>
<td>18(3)</td>
<td>-6(3)</td>
</tr>
<tr>
<td>A</td>
<td>48(5)</td>
<td>35(5)</td>
<td>124(8)</td>
<td>6(4)</td>
<td>2(5)</td>
<td>7(5)</td>
</tr>
<tr>
<td>Si1</td>
<td>59(4)</td>
<td>59</td>
<td>91(11)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Si2</td>
<td>50(3)</td>
<td>57(3)</td>
<td>117(6)</td>
<td>1(3)</td>
<td>-4(3)</td>
<td>6(3)</td>
</tr>
<tr>
<td>Si3</td>
<td>99(3)</td>
<td>46(3)</td>
<td>105(6)</td>
<td>-3(3)</td>
<td>5(3)</td>
<td>-4(3)</td>
</tr>
<tr>
<td>O1</td>
<td>103(9)</td>
<td>68(8)</td>
<td>134(15)</td>
<td>8(7)</td>
<td>-2(10)</td>
<td>10(9)</td>
</tr>
<tr>
<td>O2</td>
<td>83(8)</td>
<td>78(9)</td>
<td>174(16)</td>
<td>-7(7)</td>
<td>-31(9)</td>
<td>0(9)</td>
</tr>
<tr>
<td>O3</td>
<td>90(8)</td>
<td>57(8)</td>
<td>137(15)</td>
<td>-4(7)</td>
<td>-2(9)</td>
<td>-5(9)</td>
</tr>
<tr>
<td>O4</td>
<td>84(9)</td>
<td>61(8)</td>
<td>140(16)</td>
<td>1(7)</td>
<td>-9(9)</td>
<td>12(9)</td>
</tr>
<tr>
<td>O5</td>
<td>75(8)</td>
<td>119(9)</td>
<td>156(16)</td>
<td>36(7)</td>
<td>15(9)</td>
<td>-10(10)</td>
</tr>
<tr>
<td>O6</td>
<td>222(11)</td>
<td>81(9)</td>
<td>185(16)</td>
<td>37(8)</td>
<td>27(11)</td>
<td>42(10)</td>
</tr>
<tr>
<td>O7</td>
<td>70(8)</td>
<td>112(9)</td>
<td>178(16)</td>
<td>9(7)</td>
<td>-1(10)</td>
<td>11(10)</td>
</tr>
<tr>
<td>O8</td>
<td>62(8)</td>
<td>73(8)</td>
<td>168(16)</td>
<td>4(7)</td>
<td>23(9)</td>
<td>9(9)</td>
</tr>
<tr>
<td>O9</td>
<td>124(8)</td>
<td>124</td>
<td>115(20)</td>
<td>-26(11)</td>
<td>-6(11)</td>
<td>6</td>
</tr>
<tr>
<td>O10</td>
<td>63</td>
<td>63</td>
<td>1966(81)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O11</td>
<td>54(8)</td>
<td>79(8)</td>
<td>91(14)</td>
<td>-9(7)</td>
<td>-5(9)</td>
<td>-6(9)</td>
</tr>
</tbody>
</table>
Table 5. (cont.)

3 Jinmu

<table>
<thead>
<tr>
<th>Atom</th>
<th>β_{11}</th>
<th>β_{22}</th>
<th>β_{33}</th>
<th>β_{12}</th>
<th>β_{13}</th>
<th>β_{23}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca1</td>
<td>119(7)</td>
<td>76(7)</td>
<td>122(11)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ca2</td>
<td>63(3)</td>
<td>84(3)</td>
<td>123(6)</td>
<td>5(2)</td>
<td>-9(4)</td>
<td>3(4)</td>
</tr>
<tr>
<td>Ca3</td>
<td>91(3)</td>
<td>86(3)</td>
<td>285(7)</td>
<td>15(3)</td>
<td>-41(4)</td>
<td>-27(4)</td>
</tr>
<tr>
<td>C</td>
<td>91(9)</td>
<td>91</td>
<td>329(30)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>75(7)</td>
<td>75</td>
<td>847(36)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AlFe</td>
<td>63(4)</td>
<td>63(4)</td>
<td>107(8)</td>
<td>-1(3)</td>
<td>5(5)</td>
<td>2(4)</td>
</tr>
<tr>
<td>A</td>
<td>49(6)</td>
<td>63(6)</td>
<td>141(11)</td>
<td>2(6)</td>
<td>-8(7)</td>
<td>6(8)</td>
</tr>
<tr>
<td>Si1</td>
<td>64(5)</td>
<td>64</td>
<td>117(15)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Si2</td>
<td>57(4)</td>
<td>63(4)</td>
<td>110(7)</td>
<td>0(3)</td>
<td>-3(5)</td>
<td>4(5)</td>
</tr>
<tr>
<td>Si3</td>
<td>94(4)</td>
<td>46(4)</td>
<td>112(7)</td>
<td>1(4)</td>
<td>5(5)</td>
<td>1(5)</td>
</tr>
<tr>
<td>O1</td>
<td>121(11)</td>
<td>63(10)</td>
<td>122(19)</td>
<td>-6(10)</td>
<td>-3(13)</td>
<td>-2(13)</td>
</tr>
<tr>
<td>O2</td>
<td>85(11)</td>
<td>89(11)</td>
<td>153(21)</td>
<td>1(9)</td>
<td>-20(13)</td>
<td>12(13)</td>
</tr>
<tr>
<td>O3</td>
<td>83(11)</td>
<td>64(10)</td>
<td>153(19)</td>
<td>11(9)</td>
<td>6(13)</td>
<td>12(13)</td>
</tr>
<tr>
<td>O4</td>
<td>90(11)</td>
<td>58(11)</td>
<td>141(21)</td>
<td>7(9)</td>
<td>-6(12)</td>
<td>3(13)</td>
</tr>
<tr>
<td>O5</td>
<td>74(11)</td>
<td>102(12)</td>
<td>212(22)</td>
<td>25(10)</td>
<td>6(13)</td>
<td>-10(14)</td>
</tr>
<tr>
<td>O6</td>
<td>204(13)</td>
<td>88(12)</td>
<td>162(21)</td>
<td>24(10)</td>
<td>24(15)</td>
<td>35(13)</td>
</tr>
<tr>
<td>O7</td>
<td>79(11)</td>
<td>154(13)</td>
<td>225(22)</td>
<td>32(10)</td>
<td>29(14)</td>
<td>55(15)</td>
</tr>
<tr>
<td>O8</td>
<td>49(10)</td>
<td>75(11)</td>
<td>178(20)</td>
<td>-2(9)</td>
<td>19(12)</td>
<td>3(13)</td>
</tr>
<tr>
<td>O9</td>
<td>121(10)</td>
<td>121</td>
<td>127(26)</td>
<td>-26(15)</td>
<td>-6(14)</td>
<td>6</td>
</tr>
<tr>
<td>O10</td>
<td>108(19)</td>
<td>108</td>
<td>1501(104)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O11</td>
<td>121(12)</td>
<td>117(12)</td>
<td>195(22)</td>
<td>-17(9)</td>
<td>5(13)</td>
<td>-25(12)</td>
</tr>
</tbody>
</table>
Table 5. (cont.)

<table>
<thead>
<tr>
<th>Atom</th>
<th>β_{11}</th>
<th>β_{22}</th>
<th>β_{33}</th>
<th>β_{12}</th>
<th>β_{13}</th>
<th>β_{23}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca1</td>
<td>178(13)</td>
<td>127(12)</td>
<td>190(20)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ca2</td>
<td>133(6)</td>
<td>156(6)</td>
<td>236(11)</td>
<td>8(5)</td>
<td>-0(7)</td>
<td>3(7)</td>
</tr>
<tr>
<td>Ca3</td>
<td>170(7)</td>
<td>198(7)</td>
<td>598(17)</td>
<td>24(6)</td>
<td>-86(8)</td>
<td>-104(9)</td>
</tr>
<tr>
<td>C</td>
<td>131(15)</td>
<td>131</td>
<td>399(52)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>104(18)</td>
<td>104</td>
<td>377(55)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AlFe</td>
<td>136(10)</td>
<td>132(10)</td>
<td>221(17)</td>
<td>4(7)</td>
<td>15(10)</td>
<td>2(9)</td>
</tr>
<tr>
<td>A</td>
<td>144(13)</td>
<td>132(12)</td>
<td>188(19)</td>
<td>6(10)</td>
<td>-7(14)</td>
<td>11(14)</td>
</tr>
<tr>
<td>Si1</td>
<td>129(10)</td>
<td>129</td>
<td>160(28)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Si2</td>
<td>128(8)</td>
<td>139(9)</td>
<td>224(15)</td>
<td>5(7)</td>
<td>9(9)</td>
<td>7(9)</td>
</tr>
<tr>
<td>Si3</td>
<td>188(9)</td>
<td>118(8)</td>
<td>215(15)</td>
<td>10(7)</td>
<td>-12(9)</td>
<td>-0(9)</td>
</tr>
<tr>
<td>O1</td>
<td>172(22)</td>
<td>162(22)</td>
<td>175(37)</td>
<td>-8(18)</td>
<td>24(24)</td>
<td>6(23)</td>
</tr>
<tr>
<td>O2</td>
<td>186(23)</td>
<td>155(23)</td>
<td>309(43)</td>
<td>-5(19)</td>
<td>-70(26)</td>
<td>-0(25)</td>
</tr>
<tr>
<td>O3</td>
<td>163(23)</td>
<td>139(21)</td>
<td>201(36)</td>
<td>-14(18)</td>
<td>5(27)</td>
<td>2(27)</td>
</tr>
<tr>
<td>O4</td>
<td>140(22)</td>
<td>139(21)</td>
<td>268(42)</td>
<td>4(18)</td>
<td>-13(24)</td>
<td>-7(24)</td>
</tr>
<tr>
<td>O5</td>
<td>147(22)</td>
<td>220(25)</td>
<td>276(41)</td>
<td>40(19)</td>
<td>7(25)</td>
<td>-23(27)</td>
</tr>
<tr>
<td>O6</td>
<td>307(28)</td>
<td>163(24)</td>
<td>291(42)</td>
<td>10(21)</td>
<td>21(29)</td>
<td>0(25)</td>
</tr>
<tr>
<td>O7</td>
<td>116(21)</td>
<td>259(26)</td>
<td>360(44)</td>
<td>7(19)</td>
<td>2(26)</td>
<td>11(29)</td>
</tr>
<tr>
<td>O8</td>
<td>132(21)</td>
<td>171(22)</td>
<td>323(42)</td>
<td>12(18)</td>
<td>29(24)</td>
<td>37(25)</td>
</tr>
<tr>
<td>O9</td>
<td>209(20)</td>
<td>209</td>
<td>219(52)</td>
<td>-16(28)</td>
<td>-23(27)</td>
<td>23</td>
</tr>
<tr>
<td>O10</td>
<td>220(31)</td>
<td>220</td>
<td>662(112)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O11</td>
<td>183(23)</td>
<td>144(21)</td>
<td>240(37)</td>
<td>-2(19)</td>
<td>28(25)</td>
<td>-44(24)</td>
</tr>
<tr>
<td></td>
<td>1 Sauland</td>
<td>2 Sanpo</td>
<td>3 Jinmu</td>
<td>4 Chichibu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca1 - O1 x4</td>
<td>2.328(2)</td>
<td>2.336(2)</td>
<td>2.325(4)</td>
<td>2.340(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2 x4</td>
<td>2.523(2)</td>
<td>2.531(2)</td>
<td>2.521(3)</td>
<td>2.515(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>2.426</td>
<td>2.434</td>
<td>2.423</td>
<td>2.427</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca2 - O1</td>
<td>2.484(2)</td>
<td>2.493(2)</td>
<td>2.488(3)</td>
<td>2.469(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2</td>
<td>2.422(2)</td>
<td>2.441(2)</td>
<td>2.429(3)</td>
<td>2.420(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O3</td>
<td>2.378(2)</td>
<td>2.377(2)</td>
<td>2.378(4)</td>
<td>2.377(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4</td>
<td>2.446(2)</td>
<td>2.461(2)</td>
<td>2.453(3)</td>
<td>2.445(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5</td>
<td>2.433(3)</td>
<td>2.427(3)</td>
<td>2.422(3)</td>
<td>2.450(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5</td>
<td>2.331(2)</td>
<td>2.346(2)</td>
<td>2.341(4)</td>
<td>2.329(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O6</td>
<td>2.928(2)</td>
<td>2.921(2)</td>
<td>2.929(4)</td>
<td>3.001(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O8</td>
<td>2.321(2)</td>
<td>2.332(2)</td>
<td>2.333(3)</td>
<td>2.328(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>2.468</td>
<td>2.475</td>
<td>2.472</td>
<td>2.477</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca3 - O3</td>
<td>2.455(2)</td>
<td>2.442(2)</td>
<td>2.441(4)</td>
<td>2.424(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O6</td>
<td>2.473(2)</td>
<td>2.537(2)</td>
<td>2.483(4)</td>
<td>2.450(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O6</td>
<td>2.969(2)</td>
<td>3.045(2)</td>
<td>2.984(4)</td>
<td>2.925(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O7</td>
<td>2.568(3)</td>
<td>2.543(3)</td>
<td>2.565(5)</td>
<td>2.605(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O7</td>
<td>2.507(2)</td>
<td>2.503(2)</td>
<td>2.536(4)</td>
<td>2.541(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O7</td>
<td>2.361(2)</td>
<td>2.369(2)</td>
<td>2.375(3)</td>
<td>2.396(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O8</td>
<td>2.595(2)</td>
<td>2.612(2)</td>
<td>2.591(4)</td>
<td>2.602(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O10</td>
<td>2.558(3)</td>
<td>2.644(2)</td>
<td>2.596(5)</td>
<td>2.559(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O11</td>
<td>2.475(2)</td>
<td>2.438(2)</td>
<td>2.466(3)</td>
<td>2.509(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>2.551</td>
<td>2.570</td>
<td>2.560</td>
<td>2.557</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O6 x4</td>
<td>2.288(3)</td>
<td>2.270(3)</td>
<td>2.303(4)</td>
<td>2.298(7)</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O9 x4</td>
<td>2.633(3)</td>
<td>2.697(3)</td>
<td>2.654(4)</td>
<td>2.602(6)</td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td></td>
<td>2.461</td>
<td>2.484</td>
<td>2.478</td>
<td>2.450</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O6 x4</td>
<td>2.063(3)</td>
<td>2.087(2)</td>
<td>2.087(4)</td>
<td>2.038(7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O10</td>
<td>2.199(6)</td>
<td>2.423(11)</td>
<td>2.278(14)</td>
<td>2.020(15)</td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td></td>
<td>2.090</td>
<td>2.154</td>
<td>2.125</td>
<td>2.034</td>
<td></td>
</tr>
<tr>
<td>AlFe</td>
<td>O1</td>
<td>1.896(2)</td>
<td>1.947(2)</td>
<td>1.923(3)</td>
<td>1.925(5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O2</td>
<td>1.886(3)</td>
<td>1.915(3)</td>
<td>1.901(4)</td>
<td>1.922(6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O3</td>
<td>1.935(2)</td>
<td>1.968(2)</td>
<td>1.958(3)</td>
<td>1.966(5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O4</td>
<td>2.055(3)</td>
<td>2.077(2)</td>
<td>2.068(4)</td>
<td>2.070(6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O5</td>
<td>1.965(2)</td>
<td>1.989(2)</td>
<td>1.982(3)</td>
<td>2.004(5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O11</td>
<td>1.908(2)</td>
<td>1.919(2)</td>
<td>1.934(3)</td>
<td>1.937(5)</td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td></td>
<td>1.941</td>
<td>1.969</td>
<td>1.961</td>
<td>1.971</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O4 x2</td>
<td>1.942(2)</td>
<td>1.944(2)</td>
<td>1.950(3)</td>
<td>1.933(5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O8 x2</td>
<td>1.865(2)</td>
<td>1.874(2)</td>
<td>1.871(3)</td>
<td>1.872(5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O11 x2</td>
<td>1.876(3)</td>
<td>1.872(2)</td>
<td>1.871(4)</td>
<td>1.870(6)</td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td></td>
<td>1.894</td>
<td>1.897</td>
<td>1.897</td>
<td>1.892</td>
<td></td>
</tr>
<tr>
<td>Si1</td>
<td>O1 x4</td>
<td>1.643(2)</td>
<td>1.638(2)</td>
<td>1.643(3)</td>
<td>1.631(5)</td>
<td></td>
</tr>
<tr>
<td>Si2 - O2</td>
<td>1.642(2)</td>
<td>1.645(2)</td>
<td>1.648(3)</td>
<td>1.630(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>1.640(2)</td>
<td>1.641(2)</td>
<td>1.645(3)</td>
<td>1.634(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>1.682(2)</td>
<td>1.681(2)</td>
<td>1.676(3)</td>
<td>1.675(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>1.615(2)</td>
<td>1.615(2)</td>
<td>1.620(3)</td>
<td>1.628(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>1.645</td>
<td>1.645</td>
<td>1.647</td>
<td>1.642</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Si3 - O5</th>
<th>1.637(2)</th>
<th>1.637(2)</th>
<th>1.637(3)</th>
<th>1.623(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>06</td>
<td>1.604(2)</td>
<td>1.609(2)</td>
<td>1.608(3)</td>
<td>1.612(5)</td>
</tr>
<tr>
<td>08</td>
<td>1.621(2)</td>
<td>1.627(2)</td>
<td>1.625(3)</td>
<td>1.625(5)</td>
</tr>
<tr>
<td>09</td>
<td>1.659(3)</td>
<td>1.659(3)</td>
<td>1.664(4)</td>
<td>1.655(6)</td>
</tr>
<tr>
<td>mean</td>
<td>1.630</td>
<td>1.633</td>
<td>1.633</td>
<td>1.629</td>
</tr>
</tbody>
</table>

| 010-010 | 2.772(10) | 2.400(20) | 2.656(25) | 2.737(27) |