THE SECOND CONFERENCE ON THE LUNAR HIGHLANDS CRUST AND NEW DIRECTIONS

Spinel-rich lithologies in the lunar highland crust: Linking lunar samples with crystallization experiments and remote sensing†

JULIANE GROSS1,3,8, PETER J. ISAACSON2, ALLAN H. TREIMAN3, LOAN LE4 and JULIA K. GORMAN3,†

1Department of Earth and Planetary Sciences, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024, U.S.A.
2Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology (SOEST), 1680 East-West Road, Post 508B, Honolulu, Hawaii 96822, U.S.A.
3Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, Texas 77058, U.S.A.

ABSTRACT

Mg-Al spinel is rare in lunar rocks (Apollo and meteorite collections), and occurs mostly in troctolites and troctolitic cataclasites. Recently, a new lunar lithology, rich in spinel and plagioclase, and lacking abundant olivine and pyroxene, was recognized in visible to near-infrared (VNIR) reflectance spectra by the Moon Mineralogy Mapper (M') instrument on the Chandrayaan-1 spacecraft at the Moscovian. These outcrop-scale areas are inferred to contain 20–30% Mg-Al spinel. Possible explanations for the petrogenesis of spinel-bearing and spinel-rich lithology(s) range from low-pressure near-surface crystallization to a deep-seated origin in the lower lunar crust or upper mantle. Here, we describe 1-bar crystallization experiments conducted on rock compositions rich in olivine and plagioclase that crystallize spinel. This would be equivalent to impact-melting, which is moderately common among lunar plutonic rocks and granulites. To explore possible precursor materials and the maximum amount of spinel that could be crystallized, a lunar troctolitic composition similar to Apollo pink spinel troctolite 65785, and a composition similar to ALHA81005 as analog to the source region of this meteorite have been chosen. The crystallization experiments on the composition of ALHA 81005 did not yield any spinel; experiments on the composition similar to Apollo 65785 crystallized a maximum of ~8 wt% spinel, much less than the suggested 20–30% spinel of the new lithology detected by M'. However, our VNIR spectral reflectance analyses of the experimental run products indicate that the spinel composition of the experimental run products not only appears to be similar to the composition of the spinel lithology detected by M' (characteristics of the spinel absorption), but also that the modal abundances of coexisting phases (e.g., mafic glass) influence the spectral reflectance properties. Thus, the spinel-rich deposits detected by M' might not be as spinel-rich as previously thought and could contain as little as 4–5 wt% spinel. However, the effect of space weathering on spinel is unknown and could significantly weaken its 2 μm absorptions. If this occurs, weathered lunar rocks could contain more spinel than a comparison with our unweathered experimental charges would suggest.

Keywords: Lunar, pink spinel, M', V/NIR reflectance spectra, crystallization experiments, spinel-rich lithologies, remote sensing, Apollo 65875

INTRODUCTION

The lunar crust preserves some of the most important clues to the Moon’s history and its chemical evolution (e.g., Taylor 1982; Shearer and Papke 1999; Wieczorek et al. 2006; Demedova et al. 2007; Isaacsen et al. 2011). Among fragments of the lunar crust that have been returned as samples and meteorites there are a few that contain Mg-Al spinel, (Mg,Fe)Al2O4. In the last few years, regions rich in Mg-Al spinel have been detected by the Moon Mineralogy Mapper (M'), the near-infrared (NIR) mapping spectrometer on the Chandrayaan-1 spacecraft (e.g., Pieters et al. 2010, 2011; Lal et al. 2012), which has renewed the debate on the origin of lunar highlands and the interest in spinel-bearing rocks and lithologies on the Moon (e.g., Prissel et al. 2012, 2013; Lal et al. 2012; Gross and Treiman 2011; Gross et al. 2011; Pieters et al. 2010, 2011). These areas now include portions of the Moscovian basin, the Thompson/Ingeni basins (Pieters et al. 2011, 2013), the Theophilus crater (Dhingra et al. 2011; Lal et al. 2012), the Tycho crater (Kaur et al. 2012), and the Copernicus crater (Dhingra et al. 2013). Most of these deposits are inferred to be rich in (Mg,Fe)Al2O4 spinel (hereafter called

* E-mail: jgross@amnh.org
† Present address: Department of Geology, University of Maryland, College Park, Maryland 20742, U.S.A.
‡ Special collection papers can be found on GSW at http://ammin.geoscienceworld.org/site/misc/specialissuemail.xhtml.