WHAT LURKS IN THE MARTIAN ROCKS AND SOIL? INVESTIGATIONS OF SULFATES, PHOSPHATES, AND PERCHLORATES

Ferrian saponite from the Santa Monica Mountains (California, U.S.A., Earth): Characterization as an analog for clay minerals on Mars with application to Yellowknife Bay in Gale Crater†

ALLAN H. TREIMAN1,*, RICHARD V. MORRIS2, DAVID G. AGRESTI1, TREVOR G. GRAFF4, CHERIE N. ACHILLES5,6, ELIZABETH B. RAMPE2, THOMAS F. BRISTOW7, DOUGLAS W. MING2, DAVID F. BLAKE3, DAVID T. VANIMAN8, DAVID L. BISH6, STEVE J. CHIPERA9, SHAUNNA M. MORRISON10 AND ROBERT T. DOWNS10

1Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, Texas 77058, U.S.A.
2ARES Directorate, NASA Johnson Space Center, Houston, Texas 77058, U.S.A.
3Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294-1170, U.S.A.
4ESCG/UTC Aerospace Systems, Houston, Texas 77058, U.S.A.
5Department of Geological Sciences, Indiana University, 1001 East Tenth Street, Bloomington, Indiana 47405, U.S.A.
6Exobiology Branch, NASA Ames Research Center, Moffett Field, California 94035-1000, U.S.A.
7Planetary Science Institute, 1700 E. Fort Lowell, Tucson, Arizona 85719-2395, U.S.A.
8Chesapeake Energy Corporation, 6100 N. Western Avenue, Oklahoma City, Oklahoma 73118, U.S.A.
10Department of Geosciences, University of Arizona, Tucson, Arizona 85721, U.S.A.

ABSTRACT

Ferrian saponite from the eastern Santa Monica Mountain, near Griffith Park (Los Angeles, California), was investigated as a mineralogical analog to smectites discovered on Mars by the CheMin X-ray diffraction instrument onboard the Mars Science Laboratory (MSL) rover. The martian clay minerals occur in sediment of basaltic composition and have 02I diffraction bands peaking at 4.59 Å, consistent with tri-octahedral smectites. The Griffith saponite occurs in basalts as pseudomorphs after olivine and mesostasis glass and as fillings of vesicles and cracks and has 02I diffraction bands at that same position. We obtained chemical compositions (by electron microprobe), X-ray diffraction patterns with a lab version of the CheMin instrument, Mössbauer spectra, and visible and near-IR reflectance (VNIR) spectra on several samples from that locality. The Griffith saponite is magnesian, Mg/(Mg+2Fe) = 65–70%, lacks tetrahedral Fe3+ and octahedral Al3+, and has Fe3+2ΣFe from 64 to 93%. Its chemical composition is consistent with a fully tri-octahedral smectite, but the abundance of Fe3+ gives a nominal excess charge of +1 to +2 per formula unit. The excess charge is likely compensated by substitution of O2- for OH-, causing distortion of octahedral sites as inferred from Mössbauer spectra. We hypothesize that the Griffith saponite was initially deposited with all its iron as Fe2+, and was oxidized later. X-ray diffraction shows a sharp 001 peak at 15 Å, 00l peaks, and a 02I diffraction band at the same position (4.59 Å) and shape as those of the martian samples, indicating that the martian saponite is not fully oxidized. VNIR spectra of the Griffith saponite show distinct absorptions at 1.40, 1.90, 2.30–2.32, and 2.40 μm, arising from H2O and hydroxyl groups in various settings. The position of the ~2.31 μm spectral feature varies systematically with the redox state of the octahedrally coordinated Fe. This correlation may permit surface oxidation state to be inferred (in some cases) from VNIR spectra of Mars obtained from orbit, and, in any case, ferrian saponite is a viable assignment for spectral detections in the range 2.30–2.32 μm.

Keywords: Saponite, smectite, X-ray diffraction, MSL, Mars, Griffith Park

INTRODUCTION

The core objective of the Mars Science Laboratory (MSL) spacecraft mission as implemented by the rover Curiosity is to seek evidence of past habitable environments on Mars (Grotzinger et al. 2014). Pre-mission analyses of the Gale Crater landing site from martian orbit indicated a range of sedimentary rock deposits, of proper nature and age, that might either have been deposited in potentially habitable environments, or have transported rocks from such environments (Anderson and Bell 2010; Milliken et al. 2010; Schwenzer et al. 2012; Wray 2013). Curiosity landed a few hundred meters west of a local depression in which layered and fractured rocks were visible from orbit. The science team and engineering project management decided