SPECIAL COLLECTION: GLASSES, MELTS, AND FLUIDS, AS TOOLS FOR UNDERSTANDING VOLCANIC PROCESSES AND HAZARDS

Constraints on the origin of sub-effusive nodules from the Sarno (Pomìci di Base) eruption of Mt. Somma-Vesuvius (Italy) based on compositions of silicate-melt inclusions and clinopyroxene†

RITA KléBESZ1,2,*, ROSARIO ESPOSITO1,2, BENEDETTO DE VIVO2 AND ROBERT J. BODNAR1

1Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, U.S.A.
2Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università di Napoli “Federico II”, Naples, 80134, Italy

ABSTRACT

Major and trace element and volatile compositions of reheated melt inclusions (RMI) and their clinopyroxene hosts from a selected “sub-effusive” nodule from the uppermost layer of the Sarno (Pomìci di Base; PB) plinian eruption of Mt. Somma-Vesuvius (Italy) have been determined. The Sarno eruption occurred during the first magmatic mega-cycle and is one of the oldest documented eruptions at Mt. Somma-Vesuvius. Based on RMI and clinopyroxene composition we constrain processes associated with the origin of the nodule, its formation depth, and hence the depth of the magma chamber associated with the Sarno (PB) eruption. The results contribute to a better understanding of the early stages of evolution of the long-lived Mt. Somma-Vesuvius volcanic complex.

The crystallized MI were heated to produce a homogeneous glass phase prior to analysis. MI homogenized between 1202–1256 °C, and three types of RMI were distinguished based on their compositions and behavior during heating. Type I RMI is classified as phono-tephrite–tephriphonolite–shoshonite, and is the most representative of the melt phase from which the clinopyroxenes crystallized. The second type, referred to as basaltic RMI, have compositions that have been modified by accidentally trapped An-rich feldspar and/or by overheating during homogenization of the MI. The third type, referred to as high-phosphorus (high-P) RMI, is classified as picro-basalt and has high-P content due to accidentally trapped apatite.

Type I RMI are more representative of mags associated with pre-Sarno eruptions than to magma associated with the Sarno (PB) eruption based on published bulk rock compositions for Mt. Somma-Vesuvius. Therefore, it is suggested that the studied nodule formed from a melt compositionally similar to that which was erupted during the early history of Mt. Somma. The clinopyroxene and clinopyroxene-silicate melt thermobarometer models suggest minimum pressures of 400 MPa (~11 km) for nodule formation, which is greater than pressures and depths commonly reported for the magmas associated with younger plinian eruptions of Mt. Somma-Vesuvius. Minimum pressures of formation based on volatile concentrations of MI interpreted using H2O-CO2-silicate melt solubility models indicate formation pressures ≤300 MPa.

Keywords: Melt inclusion, homogenization, thermobarometer, Mt. Somma-Vesuvius, nodule, volcanic risk

INTRODUCTION

Volcanic activity at Mt. Somma-Vesuvius (Campanian Plain, southern Italy) has been the focus of volcanological research for at nearly two millennia, starting with the letters written by Pliny the Younger describing the eruption of Mt. Somma in 79 AD that destroyed Pompeii and killed his uncle, Pliny the Elder. This work has been motivated not only by scientific curiosity but also, in more recent years, by the significant volcanic hazard posed by the proximity of Mt. Somma-Vesuvius to the densely populated city of Naples.

While Mt. Somma-Vesuvius has been active for more than 25 ka, most research has focused on the products of the post-79 AD eruptions. The research focused both on the juvenile products (Ayuso et al. 1998; Barberi et al. 1981; Belkin et al. 1993, 1998; Black et al. 1998; Cioni 2000; Cioni et al. 1995, 1998; Civetta et al. 1991; Fulignati and Marianelli 2007; Joron et al. 1987; Lima et al. 1999; Marianelli et al. 1995, 1999, 2005; Marini et al. 1998; Mastrolorenzo et al. 1993; Mues-Schumacher 1994; Paone 2006, 2008; Piochi et al. 2006a; Raia et al. 2000; Rolandi et al. 1993; Rossi and Santacroce 1983; Santacroce et al. 1993, 2008; Schiano et al. 2004; Somma et al. 2001; Vaggelli et al. 1993; Villemant et al. 1993; Webster et al. 2001) and on the co-genetic or xenolithic lithic fragments, referred to as nodules (Barberi and Leoni 1980; Belkin and De Vivo 1993; Belkin et al. 1985; Cioni et al. 1995; Cundari 1982; Del Moro et al. 2001; Fulignati and Marianelli 2007; Fulignati et al. 1998, 2001, 2004, 2005; Gilg

* Present address: MTA CSFK Geodetic and Geophysical Institute, Sopron, 9400, Hungary. E-mail: klebesz.rita@csfk.mta.hu
† Special collection papers can be found on GSW at http://ammin.geoscienceworld.org/site/misc/specialissuelist.xhtml.