Experimental temperature cycling as a powerful tool to enlarge melt pools and crystals at magma storage conditions

MARTIN ERDMANN1,2,* AND JÜRGEN KOEPKE1

1Institut für Mineralogie, Leibniz Universität Hannover, Callinstrasse 3, 30167 Hannover, Germany
2CRPG, UMR 7358, CNRS, Université de Lorraine, 15 rue Notre Dame des Pauvres, 54501 Vandoeuvre-lès-Nancy, France

Abstract

Experiments in high silica systems at temperatures close to the solidus often produce crystals and melt pools that are too small for in situ analysis. Oscillating the temperature during an experimental run speeds up recrystallization of magma by dissolving small and increasing the size of larger crystals, dramatically changing the crystal size distribution. This principle of periodic heating and cooling, caused for example by repeated injection of hot magma, is also a potential acceleration for the formation of phenocrystic textures in natural rocks.

Here we show that temperature cycling has the potential to significantly enlarge melt pools and crystals in a fluid saturated dacitic system. Using a natural dacite dredged from the Pacific-Antarctic Rise as starting material, we performed crystallization experiments applying temperature cycling systematically for two different temperatures and different water activities at 200 MPa. For experiments at 950 °C (with \(a_{H_2O} \sim 1, 0.3, <0.1\)) an internally heated pressure vessel was used, experiments at 800 °C (with \(a_{H_2O} \sim 1, 0.5\)) were performed in a cold-seal pressure vessel. Comparative experiments at equilibrium conditions with constant temperature were performed for both approaches. For all other experiments temperature was cycled with amplitudes of 20 K for different time intervals but constant total run duration after initial equilibration at constant temperature. Additionally, for one experiment at 800 °C, the temperature was increased several times by 50 K to study the potential of dissolving tiny crystals in the matrix.

As a result of the temperature cycling, tiny crystals in the matrix were preferentially dissolved, leading to large melt pools with only rare mineral inclusions enabling microprobe analysis using a defocused beam. With regard to the area of the 10 largest crystals of each cycling experiment, clinopyroxene crystals were up to 19 times larger, and plagioclase crystals even up to 69 times when comparing to experiments performed at constant temperature. Grain sizes of FeTi-oxide phases are less influenced by this technique. Essential requirements for applying temperature cycling routinely are identical phase relations and compositions in runs with constant and cycled temperature. For all studied temperatures and water activities, the phase assemblage was the same and compositions of all phases are identical within the analytical error. Thus, the temperature cycling technique opens interesting perspectives, especially in facilitating in situ analysis in near solidus systems.

Keywords: Experimental petrology, temperature cycling, crystallization experiments, dacite, crystal growth, phenocrysts

Introduction

In situ analyses of experiments by thermal emission techniques in high-silica systems, especially at conditions close to the solidus, are challenging due to the generally very small size of crystals and melt pools. It is difficult to measure and identify phases with sizes around 1 μm by electron microprobe, and analyses of melt pools <5 μm by electron microprobe are challenging, due to the requirement of a defocused beam to avoid Na-loss (e.g., Morgan and London 2005). Moreover, trace element analyses of experimental phases <20 μm, for example with secondary ion mass spectroscopy (SIMS) or laser ablation ICP-MS, are virtually impossible for these samples. While the positive effect of oscillating temperature on nucleation and growth rates has been well known for decades from material (e.g., Randolph et al. 1971) and food sciences (e.g., Donhowe and Hartel 1996), Mills et al. (2011) showed that for magma analogs it is possible to generate larger phases in experimental run products under atmospheric conditions and at low temperature (47 ± 3 °C) via a process of dissolution/recrystallization. In addition, Mills and Glazner (2013) presented a detailed experimental study on the effects of temperature cycling on coarsening of crystals (plagioclase and olivine) in an alkali basalt at ambient pressure.

Previous experimental and petrological studies concentrated less on temperature cycling but rather on effects of decompression and/or cooling rates on crystal size distribution (CSD) to understand the formation of phenocrystic textures (e.g., Kirkpatrick 1977; Pupier et al. 2008; Brugger and Hammer 2010). As