Nickel variability in Hawaiian olivine: Evaluating the relative contributions from mantle and crustal processes

KENDRA J. LYNN1,*, THOMAS SHEA1, and MICHAEL O. GARCIA1

1Department of Geology and Geophysics, University of Hawai‘i, Honolulu, Hawaii 96822, U.S.A.

ABSTRACT

Olivine in Hawaiian tholeiitic lavas have high NiO at given forsterite (Fo) contents (e.g., 0.25–0.60 wt% at Fo88) compared to MORB (e.g., 0.10–0.28 wt% at Fo88). This difference is commonly related to source variables such as depth and temperature of melting and/or lithology. Hawaiian olivine NiO contents are also highly variable and can range from 0.25–0.60 wt% at a given Fo. Here we examine the effects of crustal processes (fractional crystallization, magma mixing, diffusive re-equilibration) on the Ni content in olivine from Hawaiian basalts. Olivine compositions for five major Hawaiian volcanoes can be subdivided at ≥Fo88 into high-Ni (0.25–0.60 wt% NiO; Ko‘olau, Mauna Loa, and Mauna Kea) and low-Ni (0.25–0.45 wt% NiO; Kīlauea and Lō‘ihi), groups that are unrelated to major isotopic trends (e.g., Loa and Kea). Within each group, individual volcanoes show up to 2.5× variation in olivine NiO contents at a given Fo. Whole-rock Ni contents from Ko‘olau, Mauna Loa, Mauna Kea, and Kīlauea lavas overlap significantly and do not correlate with differences in olivine NiO contents. However, inter-volcano variations in parental melt polymerization (NBO/T) and nickel partition coefficients (\(D_{\text{Ni}}^{\text{OL/melt}}\)), caused by variable melt SiO₂, correlate with observed differences in olivine NiO at Fo80, indicating that an olivine-free source lithology does not produce the inter-volcano groups. Additionally, large intra-volcano variations in olivine NiO can occur with minimal variation in lava SiO₂ and NBO/T. Minor variations in parental melt NiO contents (0.09–0.11 wt%) account for the observed range of NiO in ≥Fo80 olivine. High-precision electron microprobe analyses of olivine from Kīlauea eruptions (1500–2010 C.E.) show that the primary controls on <Fo80 olivine NiO contents are fractional crystallization, magma mixing, and diffusive re-equilibration. Core-rim transects of normally zoned olivines reveal marked differences in Fo and NiO zoning patterns that cannot be related solely to fractional crystallization. These Fo-NiO profiles usually occur in olivine with <Fo80 and are common in mixed magmas, although they are not restricted to lavas with obvious petrographic signs of mixing. Three-dimensional numerical diffusion models show that diffusive re-equilibration decouples the growth zoning signatures of faster diffusing Fe-Mg (Fo) from the somewhat slower Ni. This diffusive “decoupling” overprints the chemical relationships of Fe-Mg, Ni, and Mn inherited from crystal growth and influences the calculated fraction of pyroxenite-derived melt (Xpx). Sections of numerical olivine that have been affected by diffusive re-equilibration indicate that larger phenocrysts (800 μm along c-axis) are >50% more likely to preserve original Xpx compared to smaller phenocrysts (400 μm along c-axis) which rarely recover original Xpx. Sections that are parallel or sub-parallel to the c-axis and/or pass near the top of the crystal best preserve growth signatures. Thus, diffusive re-equilibration, crystal size, and sectioning effects can strongly influence the characterization of mantle source lithologies for Hawaiian volcanoes.

Keywords: Olivine, nickel, Kīlauea, Hawai‘i, magma mixing, diffusion, pyroxenite

INTRODUCTION

Hawaiian olivine from tholeiitic basalts are enriched in Ni compared to those from mid-ocean ridge basalts (MORB) at a given forsterite content (Fig. 1). This enrichment is a feature that has received much attention, with diverse interpretations (source and crustal) regarding its origin (e.g., Hart and Davis 1978; Sobolev et al. 2005; Wang and Gaetani 2008; Herzberg et al. 2013). One hypothesis advocates that high-Ni parental liquids are produced from olivine-free pyroxenite (i.e., secondary pyroxenite, formed from the reaction of partial melts of eclogite with peridotite; Sobolev et al. 2005, 2007; Herzberg 2006). Alternatively, somewhat more siliceous magmas can influence olivine compositions because they cause higher partition coefficients for nickel in olivine (e.g., \(D_{\text{Ni}}^{\text{OL/melt}} = 12.5–22.5\) for eclogite melt compared to 7.5–12.5 for basaltic melts; Wang and Gaetani 2008), alleviating the need for a multi-stage process to form an olivine-free pyroxenite hybrid source component. Differences in melting and crystallization temperatures can also strongly influence \(D_{\text{Ni}}^{\text{OL/melt}}\) (Hart and Davis 1978; Kinzler et al. 1990; Matzen et al. 2013) but are unlikely to affect Hawaiian