Co-variability of S^{6+}, S^{4+}, and $S^{2–}$ in apatite as a function of oxidation state: Implications for a new oxybarometer

BRIAN A. KONECKE1*, ADRIAN FIEGE1,2, ADAM C. SIMON3, FLEURICE PARAT3, and ANDRÉ STECHERN4

1Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.
3Géosciences Montpellier, Université Montpellier, Place E. Bataillon, 34095 Montpellier, France
4Institut für Mineralogie, Leibniz Universität Hannover, Callinstr. 3, D-30167, Hannover, Germany

ABSTRACT

In this study, we use micro-X-ray absorption near-edge structures (μ-XANES) spectroscopy at the S K-edge to investigate the oxidation state of S in natural magmatic-hydrothermal apatite (Durango, Mexico, and Mina Carmen, Chile) and experimental apatites crystallized from volatile-saturated lamproitic melts at 1000 °C and 300 MPa over a broad range of oxygen fugacities ([log(f_{O2})] = FMQ, FMQ+1.2, FMQ+3; FMQ = fayalite-magnetite-quartz solid buffer). The data are used to test the hypothesis that S oxidation states other than S^{6+} may substitute into the apatite structure. Peak energies corresponding to sulfate S^{6+} (~2482 eV), sulfite S^{4+} (~2478 eV), and sulfide $S^{2–}$ (~2470 eV) were observed inapatite, and the integrated areas of the different sulfur peaks correspond to changes in f_{O2} and bulk S content. Here, multiple tests confirmed that the S oxidation state in apatite remains constant when exposed to the synchrotron beam, at least for up to 1 h exposure (i.e., no irradiation damages). To our knowledge, this observation makes apatite the first mineral to incorporate reduced ($S^{2–}$), intermediate (S^{4+}), and oxidized (S^{6+}) S in variable proportions as a function of the prevailing f_{O2} of the system.

Apatites crystallized under oxidizing conditions (FMQ+1.2 and FMQ+3), where the S^{6+}/S_{total} peak area ratio in the coexisting glass (i.e., quenched melt) is ~1, are dominated by S^{6+} with a small contribution of S^{4+}, whereas apatites crystallizing at reduced conditions (FMQ) contain predominantly $S^{2–}$; lesser amounts of S^{4+}, and possibly traces of S^{6+}. A sulfur oxidation state vs. S concentration analytical line transect across hydrothermally altered apatite from the Mina Carmen iron oxide-apatite (IOA) deposit (Chile) demonstrates that apatite can become enriched in S^{4+} relative to S^{6+}, indicating metasomatic overprinting via a SO$_2$-bearing fluid or vapor phase. This XANES study demonstrates that as the f_{O2} increases from FQM to FMQ+1.2 to FMQ+3, the oxidation state of S in igneous apatite changes from $S^{2–}$ dominant to S^{6+} to S^{4+}. Furthermore, these results suggest that spectroscopic studies of igneous apatite have potential to trace the oxidation state of S in magmas. The presence of three S oxidation states in apatite may in part explain the non-Henrian partitioning of S between apatite and melt. Our study reveals the potential to use the S signature of apatite to elucidate both oxygen and sulfur fugacity in magmatic and hydrothermal systems.

Keywords: Apatite, sulfur oxidation state, XANES, oxybarometer, apatite crystallization experiments

INTRODUCTION

Sulfur is the third most abundant volatile in magmatic systems released during volcanic eruptions and degassing processes (cf. Faure 1986; Métrich and Mandeville 2010; Mandeville 2010) and is the fundamental chemical anomaly in arc-related magmatic-hydrothermal porphyry-type ore deposits, which are an important source of Cu, Au, Ag, and Mo (Gustafson and Hunt 1975; Candela and Piccoli 2005). A growing body of data suggests that the oxidation state of S (e.g., $S^{2–}$, S^{4+}, S^{6+}) plays a fundamental role in controlling ore metal solubilities in parental silicate melts and partitioning of ore metals between melt and magmatic-hydrothermal ore fluids (Simon and Ripley 2011). Sulfur oxidation state in silicate melts and magmatic-hydrothermal fluids is intrinsically linked to oxygen fugacity (f_{O2}), where sulfur is present as sulfate (S^{6+}) and sulfide ($S^{2–}$) in oxidized and reduced silicate melts, respectively (Jugo et al. 2010). While sulfur in aqueous fluids that exsolved from oxidized and reduced silicate melts exists as sulfate (S^{6+}; SO$_4^{2–}$), sulfide ($S^{2–}$; H,S; Burgisser et al. 2015), and a trisulfur ion (S$_3$; Pokrovski and Dubrovinsky 2011; Pokrovski and Dubessy 2015).

The mineral apatite, commonly Ca$_5$(PO$_4$)$_3$(F,Cl,OH), is an ubiquitous phase in terrestrial (Webster and Piccoli 2015) and extraterrestrial (McCubbin and Jones 2015) magmatic and magmatic-hydrothermal systems and incorporates redox sensitive elements such as Fe, Mn, and S. Mainly based on the observation that S-rich (terrestrial) apatite is typically observed...