Transformation of halloysite and kaolinite into beidellite under hydrothermal condition

HONGPING HE1,2*, SHICHAO JI1,2, QI TAO1,2, JIANXI ZHU1,2, TIANHU CHEN3, XIAOLIANG LIANG1,2, ZHAOHUI LI4, AND HAILIANG DONG5

1Key Laboratory of Mineralogy and Metallogeny, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Guangzhou 510640, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
4Geosciences Department, University of Wisconsin—Parkside, Kenosha, Wisconsin 53141, U.S.A.
5Department of Geology, Miami University, Oxford, Ohio 45056, U.S.A.

ABSTRACT

Understanding clay mineral transformation is of fundamental importance to unraveling geological and environmental processes and to better understanding the unique structure and property of phyllosilicates. To date, two pathways have been identified, i.e., the transformation among 2:1 type clay minerals (e.g., illitization of smectite) and from 2:1 type to 1:1 type (e.g., kaolinization of smectite). However, the transformation of 1:1 to 2:1 type is less commonly observed. In this study, hydrothermal experiments were conducted to investigate the possibility of the transformation of 1:1 type clay minerals (i.e., halloysite and kaolinite) into 2:1 ones (i.e., beidellite). The obtained products were characterized by XRD, TG, FTIR, 27Al and 29Si MAS NMR, and HRTEM. XRD patterns of the hydrothermal products display characteristic basal spacing of smectite group minerals at 1.2–1.3 nm with dramatic decrease/disappearance of the (001) reflection of halloysite and kaolinite. This is consistent with HRTEM observations, in which clay layers with a thickness of 1.2–1.4 nm are observed in all hydrothermal products and the Si/Al ratio determined by EDS analysis is close to that of beidellite. The basal spacing increases to ~1.70 nm upon ethylene glycolation, displaying swelling ability of the resultant minerals. The consumption of surface OH in precursor minerals during the transformation leads to a dramatic decrease of mass loss of dehydroxylation and merging of the well resolved OH stretching vibrations in precursor minerals into one at ca. 3667 cm⁻¹, which is indicative of beidellite. These results demonstrate that both halloysite and kaolinite can be converted to 2:1 beidellite under hydrothermal condition, and the transformation of halloysite is easier than that of kaolinite. Such transformation of 1:1 clay minerals to 2:1 ones could be a new pathway for the transformation of clay minerals in nature. Meanwhile, the substitution of Al³⁺ for Si⁴⁺ is found in all newly formed beidellite, suggesting the chemical composition of the newly formed Si-O tetrahedral sheet is different from the one inherited from the precursor clay minerals. This can well explain the formation of “polar layer” in mixed-layer phyllosilicates. These findings are of high importance for better understanding the transformation among clay minerals and unique structure of mixed-layer phyllosilicates.

Keywords: Clay transformation, hydrothermal condition, halloysite, kaolinite, beidellite

INTRODUCTION

Clay minerals are ubiquitous in the Earth’s crust, and clay transformations play critical roles in many geologic and environmental processes (e.g., soil formation, diagenesis, clay deposit formation, climate change) (Singer 1980; Christidis and Dunham 1993; Aoudjit et al. 1995; Stern et al. 1997; Wilson 1999). Meanwhile, clay minerals are a family of natural nano-materials with unique structure and chemico-physical nature (Bergaya et al. 2006). Therefore, understanding clay transformation is of fundamental importance to unraveling these processes and to utilizing clay mineral resources.

To date, two pathways have been identified, i.e., the transformation among 2:1 type clay minerals (e.g., illitization of smectite, glauconitization of smectite) (Odin 1988; Stixrude and Peacor 2002) and from 2:1 type to 1:1 type (e.g., kaolinization of smectite) (Altschuler et al. 1963; Ryan and Huertas 2009). Correspondingly, two mechanisms have been proposed to explain these clay transformations: (1) solid-state transformation: conversion from one 2:1 type clay mineral to another in the solid-state by rearrangement of ions within the interlayer as the main route for atom diffusion in and out of the structure (Cuadros and Altaner 1998; Środoń et al. 2000) or stripping off one of the tetrahedral sheets from a 2:1 structure for the transformation from 2:1 to 1:1 type clay minerals (Stixrude and Peacor 2002; Dudek et al. 2006); (2) dissolution-crystallization: dissolution of the original mineral and crystallization of a new mineral (Środoń et al. 2000). The importance of either solid-state or