The key magmatic processes that lead to the formation of large magmatic-hydrothermal porphyry copper mineral deposits remain uncertain, and a particular question is why a few of these deposits, such as the Pebble porphyry Cu-Au-Mo deposit, are strongly enriched in both gold and molybdenum. This study investigated the igneous rocks of the Pebble district and obtained major and trace element compositions, Sr and Nd isotopic compositions, and zircon age and trace element data to model the origin of the ore-forming magmas.

The Pebble porphyry Cu-Au-Mo deposit, one of the world’s largest Cu-Au resources, formed during the final stages of regional Late Cretaceous arc magmatism (101–88 Ma) in the Southwest Alaska Range. Local pre-mineral intrusions (99–95 Ma) are dominated by alkaline compositions including monzodiorite stocks, shoshonite dikes, and monzonite porphyries, but also include lesser volumes of high-K calc-alkaline diorite and granodiorite sills. The occurrence of early alkaline magmas has been noted at other gold-rich porphyry systems, including Bingham and Kerr-Sulfurets-Mitchell. Mineralization at Pebble is associated with granodiorite to granite porphyry dikes related to the >165 km2 high-K calc-alkaline Kaskanak granodiorite batholith (91–89 Ma). Over a period of 10 m.y., Late Cretaceous melts evolved from high temperatures (930–730 °C) and modestly hydrous and oxidized conditions to relatively low temperatures (760–680 °C) and very hydrous and oxidized conditions. Collectively, all Late Cretaceous igneous rocks at Pebble contain magnetite and little or no ilmenite, are metaluminous to weakly peraluminous, and have typical arc trace element enrichments and depletions. They have moderate Sr/Y ratios (20–55) and gently sloped REE profiles (La/Yb = 5–20) that are not adakitic, which supports a source area lacking garnet that is consistent with a thin crust in southwest Alaska.

Radiogenic isotopes for Late Cretaceous intrusions at Pebble have a restricted range of primitive Sr and Nd isotopic compositions (87Sr/86Sr$_i$ = 0.70329–0.70424; εNd$_i$ = 4.9–6.1), which overlap with volcanic and plutonic basement rocks of the Jurassic Talkeetna Arc along the Alaska Peninsula. The Kaskanak batholith intrudes the Late Jurassic–Early Cretaceous Kahiltna flysch, and mixing models using Sr and Nd isotopes indicate that the Kaskanak batholith assimilated ≤10 wt% Kahiltna flysch in amounts that did not likely affect magma fertility. Xenocrystic zircon samples are abundant in Cretaceous pre-mineral intrusions and have U-Pb ages similar to detrital zircon samples in the Kahiltna flysch. These data support some assimilation of upper crustal Kahiltna flysch, but the dominance of Devonian–Mississippian xenocrystic zircon populations in some intrusions suggests derivation from unexposed older basement.

The extraordinary endowment of Cu and Au at Pebble is inferred to result from primitive calc-alkaline and alkaline arc magmas and the hydrous and strongly oxidized conditions that suppressed the formation and fractionation of Cu- and Au-enriched sulfide melts. Furthermore, differentiation to silicic compositions was a product of extensive crystal fractionation of parental melts accompanied by minor crustal assimilation. The trace element content of the intermediate composition intrusions indicates that both hornblende and titanite fractionation processes in the mid- to shallow-crust were both required to produce the more evolved granodiorite and granite porphyry compositions. Despite the apparent lack of Mo-enriched continental crust in the region, primitive hydrous melts were produced by protracted arc magmatism and were modified by minor crustal assimilation including early alkaline magmatism, periodic recharge of mafic hydrous basalts and hybrid andesites, and fractional crystallization, which was apparently sufficient to enrich Mo in late stage felsic melts.

Keywords: Pebble, Kaskanak, porphyry, Cu-Au-Mo, southwest Alaska, SW Alaska Range, Cretaceous
INTRODUCTION

The Pebble porphyry Cu-Au-Mo deposit in southwest Alaska (Fig. 1) is one of the world’s largest Cu-Au-Mo-Ag mineral resources with 10.9 Bt ore containing 36.9 Mt copper, 2.53 Mt molybdenum, 3054 t gold, and 13,488 t silver, as well as abundant rhenium and minor palladium (Lang et al. 2013; Rebagliati and Lang 2015). Late Cretaceous magmatism of the Southwest (SW) Alaska Range belt (Fig. 1; Young et al. 1997; Hart et al. 2004; Goldfarb et al. 2013) spanned ~10 m.y. in the Lake Iliamna region and culminated with the intrusion of the Kaskanak batholith that consists largely of equigranular granodiorite and small volumes of granodiorite to granite porphyry dikes associated with ore formation.

Previous studies on the Pebble deposit have documented the geology and age of intrusions and ores (Bouley et al. 1995; Schrader 2001; Ricardo 2009; Gaunt et al. 2010; Lang et al. 2013; Olson 2015), interpretations from regional-scale aeromagnetic data (Anderson et al. 2014), the mineralogy, geochemistry, and fluid-inclusion characteristics of hydrothermally altered rocks (Gregory et al. 2013; Harraden et al. 2013; Gregory 2017), and the radiogenic isotope characteristics of intrusions in the district (Ayuso et al. 2013; Goldfarb et al. 2013). In this contribution, we expand the petrological and geochemical data for magmatism in the Pebble district and include barren pre-ore calc-alkaline sills, pre-ore alkaline intrusions, the mineralized Kaskanak batholith, and post-ore Paleocene and Eocene hypabyssal dikes and intrusions. We examine the whole-rock major and trace elements, whole-rock Sr-Nd isotopic compositions, and rare earth element (REE) abundances of zircon and titanite from intrusions in the district to constrain the source of magmas and the role of assimilation and fractional crystallization (AFC) processes in generating the ore-forming magmas. Finally, we conclude with a discussion of the origin of the extraordinary metal endowment of Cu, Au, and Mo at Pebble and the likely key igneous processes that produced water, chloride, sulfur, and metal-rich melts from, which ore fluids were extracted.

Figure 1. Simplified terrane map of southern Alaska (after Silberling et al. 1994). Selected Pennsylvanian and Cretaceous radiometric ages of intrusions in the Wrangellia composite terrane (WCT) are from Iriondo et al. (2003), Amato et al. (2007b), Bacon et al. (2012), and the USGS Mineral Resources Data System (MRDS) (http://mrdata.usgs.gov/). Porphyry occurrences are from Goldfarb et al. (2013) and the MRDS, and the Kennecott copper deposit (estimated age 155–110 Ma) is from MacKevett et al. 1997). Note that earliest Cretaceous magmatism in Tosina-St. Elias belt on the seaward margin of the WCT contains no known porphyry occurrences, but the younger Nutzotin-Kluane and SW Alaska Range belts of the landward margin of the WCT contains several porphyry deposits.
GEOCHEMICAL APPRAISALS OF ARC MAGMAS

Recent studies have developed many semi-quantitative geochemical techniques for assessing fertility of volcanic arc magmas on the basis of oxidation and hydration of the melt. In fertile volcanic arcs, parental magmas of large porphyry deposits are necessarily water-rich (>2.5 wt%, typically ≥4 wt%), oxidized (e.g., often ≥ΔNNO+2), rich in halogens (e.g., Cl/H₂O ≥ 0.5), anomalous in sulfur (e.g., Fe/S ≤ 100), and have experienced significant crystal-fractionation to increase chalcophile metal partitioning from the melt to the hydrothermal system (Burnham and Ohmoto 1980; Candela and Holland 1986; Dilles 1987; Cline and Bodnar 1991; Webster 1992; Candela 1992; Candela and Piccoli 2005; Richards 2011; Dilles et al. 2015). Redox sensitive proxies, such as Ce and Eu anomalies in zircon (Ballard et al. 2002; Trail et al. 2011; Dilles et al. 2015) or whole-rock V/Sc ratios (Loucks 2014) have also been utilized to infer oxidized conditions where Fe-Ti oxides are not present or preserved.

The petrographic context of these magmas is also critical for constraining and interpreting these geochemical proxies. For example, the presence of titanite in equilibrium with magnetite and quartz suggests highly oxidized melts (e.g., ≥ΔNNO+2, Dilles 1987; Wones 1989), and the presence of amphibole suggests minimum magmatic water contents of 3.5 wt% H₂O for granodiorite compositions at shallow crustal pressures (Naney 1983). The presence of amphibole and/or titanite can also greatly impact the high field strength element (HFSE) and rare earth element (REE) budget of differentiated melts (e.g., Kay and Mpodozis 2001; Richards and Kerrich 2007; Glazner et al. 2008; Bachmann and Bergantz 2008). Several workers (Seedorff et al. 2005; Richards and Kerrich 2007; Chiaradia et al. 2009; Richards et al. 2011; Richards et al. 2012; Loucks 2014) have advocated the importance of high-water content in producing typical geochemical features of porphyry copper deposits and other hydrous arc magmas. Richards and Kerrich (2007) suggest high Sr/Y and La/Yb ratios in hydrous arc magmas are likely achieved by amphibole ± titanite fractionation. Amphibole fractionation prevails at near-liquidus (high) temperatures because elevated water contents suppress plagioclase crystallization. These geochemical features of porphyry deposits are accentuated in thicker crust, but are also apparent, albeit less so, in thin crustal settings such as oceanic arcs (Richards and Kerrich 2007).

GEOLOGIC SETTING OF SOUTHWEST ALASKA

During the Jurassic to Early Cretaceous, the allochthonous Jurassic–Pennsylvanian Wrangelia composite terrane (WCT; Pfafker et al. 1989) of oceanic arc affinity accreted to the North American plate and now makes up the bulk of southern Alaska (Fig. 1). In south-central and southeastern Alaska, the WCT consists of the Peninsular, Wrangelia, and Alexander terranes, whereas in the southwest Alaska only the Peninsular terrane is recognized. In southwestern Alaska, the suture zone between the Peninsular terrane and rocks of continental crustal affinity belonging to the Neoproterozoic–Paleozoic Farewell terrane, a part of the Intermontane belt superterrane, is obscured by younger sedimentary and igneous rocks and is therefore poorly delineated. Basement exposures of the Peninsular terrane consist of sedimentary formations (e.g., Triassic Kamishak and Jurassic Talkeetna Formations) and variably metamorphosed plutonic and volcanic rocks of the Triassic Chilikadrotna Greenstones (flood basalts), other Triassic mafic and ultramafic intrusions (e.g., those from the Tlikakila Complex), and Jurassic intrusive and volcanic rocks of the Talkeetna Arc (Dettmerman and Reed 1980). Syn- to post-collisional volcaniclastic flysch deposits up to 5–7 km thick (Kalbas et al. 2007) overlie these basement rocks and were deposited in foreland basins in the Jurassic to Late Cretaceous (Csejtey et al. 1982; Jones et al. 1982, 1986; Coney and Jones 1985; Wallace et al. 1989; Kalbas et al. 2007; Hampton et al. 2010; Hults et al. 2013). In south-central and southwestern Alaska, these sedimentary strata are informally known as the Kahlitna flysch, noting that the southwesternmost portion of the basin is also known as the Koksetna River Sequence (e.g., Wallace et al. 1989). These sedimentary rocks comprise pelagic shales and turbidites of fine- to coarse-grained sandstones, siltstones, and minor pebble conglomerates composed of predominantly mafic to intermediate volcanic rock fragments with varying amounts of plagioclase, quartz, clinopyroxene, hornblende, epidote, and sedimentary rock fragments (Pfafker et al. 1989; Wallace et al. 1989).

Concurrent with the development of flysch deposits but farther east in the Eastern Alaska Range, plutons of the Early Cretaceous Chisana arc (Barker 1987) intruded the Alexander and Wrangelia terranes (Fig. 1). The early part of this magmatic arc includes the Tosina-St. Elias belt (120–140 Ma), which occurs on the seaward margin of the WCT and contains no known porphyry occurrences. By approximately 120 Ma, Early Cretaceous magmatism had migrated northward to the landward margin of the WCT to form the Nutzotin–Kluane plutonic belt (104–118 Ma) that contains several minor porphyry deposits (Hart et al. 2004; Goldfarb et al. 2013). In the Late Cretaceous (101–88 Ma), intermediate to felsic intrusions of the SW Alaska Range plutonic belt were emplaced in the Western Talkeetna Mountains and Alaska Peninsula (Reed and Lanphere 1972; Dettmerman and Reed 1980; Young et al. 1997; Iriondo et al. 2003; Hart et al. 2004; Amato et al. 2007b; Goldfarb et al. 2013). The SW Alaska Range belt contains few known porphyry copper occurrences, but does include the giant Pebble porphyry deposit.

The SW Alaska Range belt consists predominantly of plutonic rocks and hypabyssal dikes (Reed and Lanphere 1972; Dettmerman and Reed 1980; Amato et al. 2007b) that intrude the Kahlitna flysch and the underlying Kamishak and Talkeetna formations of the Peninsular terrane (Dettmerman et al. 1996). Paleocene and Eocene volcanic rocks and Quaternary glacial sedimentary rocks are widespread in the SW Alaska Range and unconformably overlie and obscure Mesozoic rocks in the region.

GEOLOGY OF THE PEBBLE DISTRICT

In the Pebble district (Fig. 2), Late Cretaceous plutonic rocks span a 10 m.y. period that culminated with emplacement of porphyry dikes and stocks that are genetically linked to the formation of the Pebble porphyry Cu-Au-Mo deposit [see Olson (2015) for a complete chronological summary]. Exposures and drill intercepts indicate a >300 km² extent of Late Cretaceous plutonic rocks at Pebble, and some workers have suggested aeromagnetic data indicate an even larger extent (~900 km²) beneath volcanic and sedimentary cover (Anderson et al. 2014), thereby making it one of a few large Cretaceous plutonic complexes delineated...
in the SW Alaska Range belt (Wilson et al. 2015). In the Pebble district, these intrusions are hosted by Early Cretaceous deposits of the Kahiltna flysch based on inherited zircons and crosscutting relationships (Lang et al. 2013). The oldest exposures of igneous rocks in the district include greenschist facies metabasalt and metagabbro roof pendants in the Kaskanak batholith, which likely represent Triassic–Jurassic basement rocks.

Pre-mineralization intrusions (ca. 99–95 Ma) are precursory to the emplacement of the Kaskanak batholith and are subdivided into two diverse magmatic suites: (1) calc-alkaline sills, and (2) alkalic stocks and porphyry dikes (Bouley et al. 1995; Schrader 2001; Gaunt et al. 2010; Hart et al. 2010; Lang et al. 2013). Biotite pyroxenite cumulate rocks (~96 Ma) occur with alkalic intrusive rocks in the 25 Zone primarily west of the ZG.
fault trace (Fig. 2) and may represent the eroded roots of the alkalic magmatic system. There are no known intrusions with ages between 95 and 91 Ma in the district.

The Kaskanak batholith (91–89 Ma) is composed of calc-alkaline granodiorite, lesser granite and subordinate andesite intrusions genetically linked to multiple centers of porphyry copper and skarn mineralization. It includes at least three generations of weakly to strongly mineralized granodiorite to granite porphyry dikes and plugs (Fig. 2). The outlined resource boundary of the Pebble deposit includes two main mineralization centers known as the West Zone and East Zone (Fig. 3).

Late Cretaceous intrusions were exhumed to the surface in the latest Cretaceous, crosscut by a series of latest Late Cretaceous to Paleocene hypabyssal intrusions (ca. 67–58 Ma), and overlain by Paleocene (≤61 Ma; Olson 2015) volcaniclastic and tuffaceous strata. These previously unnamed hypabyssal intrusions and volcaniclastic sedimentary rocks are herein referred to as the Talarik Intrusive Suite and the Talarik Formation. These rocks may be correlative with the Copper Lake Formation (Detterman et al. 1980; Detterman et al. 1996) and similar volcanic and volcaniclastic rocks described in the Dillingham Quadrangle (Iriondo et al. 2003; Wilson et al. 2003). Eocene hypabyssal intrusions and associated volcanic rocks (47–41 Ma) are exposed primarily on the east side of the district around Koktuli Mountain and are henceforth referred to as the Koktuli Intrusive Suite and the Koktuli Volcanics. These Eocene igneous rocks are likely part of the Eocene to earliest Miocene Meshik Arc (Wilson 1985; Wilson et al. 2015). Some centers of epithermal mineralization in the district (Fig. 2) are associated with Eocene latite dikes (Fig. 3b; Bouley et al. 1995).

The structural history of the Pebble district is complex. Geologic observations indicate that extension, tilting, and normal faulting occurred during deposition of the Talarik Formation and the Koktuli Volcanics (Olson 2015). The northeast-striking ZG Fault bounds the western side of the East Graben, has the largest observed offsets, and is one of the oldest normal faults recognized in the district (Figs. 2 and 3; Olson 2015). Eocene and younger hypabyssal intrusions and orthogonal normal faulting dissect the ZG fault (Olson 2015). Collectively, normal faulting in the district has produced ~20° eastward rotation (Fig. 3).

ANALYTICAL METHODS

Whole-rock analyses

In total, 108 whole-rock major and trace element analyses were performed at Washington State University’s (WSU) GeoAnalytical Lab using both XRF (Johnson et al. 1999) and ICP-MS methods (Knaack et al. 1994). These samples were collected from drill core and, to the extent possible, were selected to minimize the effects of hydrothermal alteration. For many alteration-sensitive plots (e.g., A/NCK, Sr, etc.), additional samples were culled using Ishikawa alteration index (AI) values ≥60 (Ishikawa et al. 1976; Large et al. 2001; AI = molar 100·[K₂O+MgO]/[K₂O+MgO+Na₂O+CaO]) and LOI values ≥3.5 wt%. See Appendix A for the

Figure 3. (a) Schematic east-west cross section and geologic reconstruction of the Pebble district interpreted from available drill core data (Olson 2015). Lithologies as in Figure 2 or as labeled. Intrusion geometries, crosscutting relations, and fault relationships east of the ZG fault are highly interpretative and based on scarce drill data. (b) Summary of inferred intrusion ages based on radiometric ages and crosscutting relations.

1Deposit item AM-17-86053, Tables 3 and 4 and Supplemental Appendices. Deposit items are free to all readers and found on the MSA web site, via the specific issue’s Table of Contents (go to http://www.minsocam.org/MSA/AmMin/TOC/2017/Aug2017_data/Aug2017_data.html).
complete whole-rock major and trace element compositions and sample locations. Strontium and neodymium isotopic compositions were determined for 12 samples at the University of Cape Town, South Africa, using methods described by Miková and Denková (2007). Appendix 1 and Table 2 provide additional analytical details.

In situ zircon and titanite analyses

Ten zircon separates were analyzed by the sensitive high-resolution ion-microprobe in reverse geometry (SHRIMP-RG) at the Stanford USGS Micro Analysis Center (SUMAC) to obtain U/Pb age and trace element compositions (Appendix 1). A Photon Machines Analyte 1 D.

The Sedimentary Rock Fluid Inclusion (SRFI) method was used to determine the in-situ melt composition and to constrain the conditions of magma generation. The SRFI method involves the analysis of melt inclusions in zircon and titanite to determine the composition of the melt at the time of crystallization. The melt compositions are obtained by crushing the crystals and analyzing the melt inclusions using a combination of electron microprobe analysis (EMPA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

Table 1. Petrography of Pebble District igneous rocks

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Texture(s)</th>
<th>Primary mineralogy (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gabbro</td>
<td>Fine- to medium-grained and subophitic</td>
<td>60–70% plag (0.25–1 mm, rarely up to 5 mm), 15–20% cpx (0.5–2.5 mm), 8% mag (0.25–1.5 mm), 2% ilm (0.2–0.5 mm), acc. apa</td>
</tr>
<tr>
<td>Basalt</td>
<td>Hypocrystalline, porphyritic, interstitial</td>
<td>60–70% plag (0.2–5 mm), 10–15% glass, 5–10% mag (0.5 mm), 10% cpx (0.2–0.5 mm),</td>
</tr>
<tr>
<td>Diorite Sills</td>
<td>Granular to porphyritic</td>
<td>60% plag (0.5–1.5 mm), 15–20% gm (0.05–0.1 mm; feldspar > gtz), 10–15% primary amphi or cpx & bt (1.5–3 mm), 2–1% mag (0.05–0.15 mm), <2% apa (0.1–1 mm), acc. zir</td>
</tr>
<tr>
<td>Monzdonitoid Stock</td>
<td>Sierate, poliklitik K-felds</td>
<td>50–55% plag (0.2–2 mm), 15–20% K-felds (2–4 mm), 15% cpx (0.1–2 mm), 10% primary bt (0.1–4 mm), and 2–5% mag (0.1–0.3 mm)</td>
</tr>
<tr>
<td>Biotite</td>
<td>Cumulate cpx, intercumulate bt and mag</td>
<td>70% cpx (0.25–1.5 mm, sometimes as large as 7 mm), 15% bt (0.5–1.5 mm), 15% mag (0.1–0.5 mm), acc. plag (0.1–0.3 mm) and apa</td>
</tr>
<tr>
<td>Monzonite</td>
<td>Porphyritic, albitic coronas on plag (emphasized by preferentially illeite-altered cores)</td>
<td>50–70% cryptocrystalline gm, 25–40% plag (0.5–6 mm), 5–15% K-felds (commonly 1–2 mm, up to 10 mm), 5–10% primary bt (0.5–1 mm), and accessory zircon</td>
</tr>
<tr>
<td>Monzonite Porphyry</td>
<td>Porphyritic, poliklitik K-feldspar, albino inclusions on plag (emphasized by preferentially illeite-altered cores)</td>
<td>30–50% cryptocrystalline to microcrystalline gm (up to 0.3 mm containing plag > K-felds > bt), 20% plag (2–3 mm), 20–30% K-felds (commonly 1–2 cm, up to 7 cm), 5–10% total mafics (bt & cpx) (0.5–4 mm), 1–2% mag (0.05–0.2 mm), <0.5% apa (0.1–0.5 mm), rare acc. tit and zir</td>
</tr>
<tr>
<td>Monzonite Porphyry</td>
<td>Porphyritic, hypocrystalline to microcrystalline</td>
<td>40–50% plag (0.5–1.5 mm), 15–20% gm (0.1–0.2 mm plag + K-felds), 10–15% cpx (1–2 mm), 5–8% mag (0.5–1.5 mm), 5–10% bt (0.5–3 mm), acc. apa (<0.3 mm)</td>
</tr>
<tr>
<td>Shoshonite Dikes</td>
<td>Glomeroporphyrlic</td>
<td>40–50% plag (0.5–1.5 mm), 15–20% gm (0.1–0.2 mm plag + K-felds), 10–15% cpx (1–2 mm), 5–8% mag (0.5–1.5 mm), 5–10% bt (0.5–3 mm), acc. apa (<0.3 mm)</td>
</tr>
<tr>
<td>Granodiorite Sills</td>
<td>Granular to porphyritic, some sieve-textured plag with albitic coronas</td>
<td>40–50% plag (0.5–2 mm), 30–40% aplitic gm (0.05 mm), 5–10% amphibite (1–3 mm), 2% mag (0.1–0.3 mm), 0–1% gtz phenocrysts (0.5–1 mm), <1% apa (<0.1 mm), acc. zir</td>
</tr>
<tr>
<td>Porphyry Dikes</td>
<td>Porphyritic, hypocrystalline gm in 1 Gold Zone, microcrystalline gm near 308 Zone, sieve-textured plag with albitic coronas</td>
<td>50–60% plag (0.1–0.5 mm), 20% cryptocrystalline gm, 8–10% amphibite (0.1–1 mm), 1–2% mag (0.02–0.1 mm), acc. apa; 308 Zone: 45% plag (0.5–3 mm), 35–45% fine gm (plag > K-sparr > amphibolite) (0.01–0.05 mm), 10–12% amphibite (1–7 mm), 2–3% mag (0.02–0.1 mm), acc. apa, zir, microcline (0.5–1 mm)</td>
</tr>
</tbody>
</table>

Notes: Units are listed by age from oldest to youngest. Abbreviations: acc. = accessory, act = actinolite, amphi = amphibolite, apa = apatite, bt = biotite, calc = calcite, chl = chlorite, cpx = clinopyroxene, equi = epidote, gm = groundmass, hem = hematite, HT = hydrothermal, ilm = ilmenite, K-felds = K-feldspar, mag = magnetite, musc = muscovite, plag = plagioclase, qtz = quartz, smeet = smectite, tit = titanite, zir = zircon. (Table extends to next page)

Calculated Eu and Ce anomalies

The magnitude of the redox-sensitive Eu and Ce anomalies can be quantified by the expressions: Eu/Eu* = Eu/Ce*[(Sm/Ce* + Gd/Ce*)/2] and Ce/Ce* = Ce/Ce*[(Sm/Ce* + Gd/Ce*)/2], where CN refers to chondrite-normalized values (McDonough and Sun 1995). However, the Ce anomaly is difficult to measure accurately due to large analytical uncertainties and limits of determination for low-abundance La or Pr in zircon by SIMS or LA-ICP-MS methods. Instead of using the Ce/Ce* calculation, we have used the Ce/Nd ratio as a proxy for the Ce anomaly following initial proposals by Olson (2015) and Lu et al. (2016).

Calculated zircon and titanite temperatures

Ti-in-zircon and Zr-in-titanite temperatures can be estimated for the melt if the activities of TiO2 and SiO2, and the pressure of crystallization can be estimated where T°(K) = -(4800 ± 86)/(log[Ti ppm]) – (5.71 ± 0.072) + log[activity(TiO2)] - 273.15 and T°(K) = [7708 + 960(P/100)]/[10.52 - log(activity[TiO2]) - Zr ppm]) - 273.15 (Ferry and Watson 2007; Hayden et al. 2008). Estimates of 0.5–0.7 for activity are generally appropriate for most volcanic arc magmas that are buffered by Ti-bearing phases (e.g., ilmenite or titanite) and an estimate of activity of 1.0 is appropriate for quartz-saturated igneous rocks (Watson et al. 2006; Claiborne et al. 2010; Walker et al. 2013). Underestimations of the activity may cause a maximum decrease in Ti-in-zircon temperatures of 20 °C (Watson et al. 2006; Claiborne et al. 2010), and a maximum increase in Zr-in-titanite temperatures of 20 °C (Hayden et al. 2008). Errors of 0.1 GPa in the pressure estimates would cause a systematic 10–15 °C shift in zircon temperatures at 700 and 800 °C. The largest single contributor of uncertainty is caused by zircon and titanite sector zoning that may skew temperature calculations by ±15–20 °C in zircon (Dilles et al. 2015) and up to ±50–70 °C in titanite between the temperature range of 700 and 800 °C (Hayden et al. 2008).
Table 1.—Extended

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Primary mineralogy (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaskanak Jt</td>
<td>50–60% plag (0.5–3 mm), 15–20% K-felds (1–20+ mm)</td>
</tr>
<tr>
<td>Granodiorite</td>
<td>5–10% plag (0.25–1.5 mm), 2–3% plag (0.5–1 mm), up to 1% primary bt (0.2–2 mm), and accessory ilm (<0.2 mm), tit (0.3–1 mm), zir (50–120 mm), and apa (50–300 mm)</td>
</tr>
</tbody>
</table>

Results

Petrography and mineralogy

Major and accessory mineral phases and textures of igneous rocks in the Pebble district (Olson 2015) are summarized in Table 1 and provide constraints for mineral-melt trace-element partitioning and melt evolution for Pebble district intrusions. Most pre-mineral Late Cretaceous intrusions (99–95 Ma) are medium-grained and hypidiomorphic-granular, but volumetrically, most alkaline rocks include monzonite porphyry with phenocrysts up to 6 mm and a groundmass with a grain size <0.3 mm (Table 1). The mineralogy of the bulk of these pre-mineral intrusions is dominated by plagioclase, biotite, and augite, with accessory magnetite and apatite. The latest of these intrusions (e.g., late monzonite porphyry and granodiorite sills) have nearly subequal quantities of biotite and amphibole but lack augite, and this change reflects an increase of magmatic water content with time. Rare diamond-shaped mineral sites containing hydrothermal magnetite are found in some of the most differentiated monzonite porphyries and are inferred to be pseudomorphs of igneous titanite. Ilmenite is not observed in any of the pre-mineral Cretaceous intrusive rocks, but small amounts may have originally been present and later hydrothermally altered (Olson 2015).

The bulk of the Kaskanak batholith is composed of granodiorite that ranges from medium-grained hypidiomorphic granular to strongly porphyritic in texture. These rocks contain abundant plagioclase and amphibole, minor K-feldspar and quartz with accessory magnetite (2–3 vol%), biotite (<1 vol%), and titanite (0.5–2.0 vol%), and is interpreted to be more oxidized and hydrous than the pre-mineral intrusions based on the abundance of titanite and amphibole. Mineralized porphyry dikes are characteristically crystal-rich and contain ≥75 vol% phenocrysts in early granodiorite porphyry and ≥50 vol% in late quartz granite porphyry. Quartz and K-feldspar phenocrysts are absent from early granodiorite porphyry but are present up to 2 vol% of each in late granite porphyry. Porphyritic phases of the Kaskanak batholith have a fine-grained groundmass dominated by quartz and K-feldspar that ranges from 0.3–1 mm graphic texture in “transitional” granodiorite and 0.02–0.3 mm aplitic texture in porphyry intrusions.

Whole-rock geochemistry

Jurassic (?) mafic roof pendants. Basalt and gabbro bodies occur as roof pendants of the Kaskanak batholith and Koktuli Mountain pluton (Fig. 2). Locally, the basalt crosscuts and includes inclusions of the gabbro. Their major and trace element compositions share similarities with mafic volcanic and plutonic rocks (<55 wt% SiO2) of the Jurassic Talkeetna Arc in the Talkeetna Mountains (Clift et al. 2005; Greene et al. 2006) and the gabbronorites of the Tonsina mafic-ultramafic root of the Talkeetna arc in the Peninsular terrane (DeBari and Sleep 1991). Collectively, they are all tholeiitic, have moderate Mg numbers (30–45), and are ilmenite-bearing. The gabbro and basalt in the Pebble district are relatively enriched in Ti, Ni, Cr, and V (Figs. 5 and 7) compared to most other Talkeetna Arc volcanic and plutonic rocks, and thus are more primitive. They are also relatively enriched in HFSEs such as Nb, Ta, Zr, and...
Hf (Appendix A). Therefore, Pebble gabbro and basalt may be similar in composition and age to the Talkeetna Arc, but are most similar to the more primitive Tosina segment. Alternatively, they could be correlative with the Triassic Chilikadrotna Greenstones for, which comparative geochemical data are lacking (Detterman and Reed 1980; Wallace et al. 1989; Amato et al. 2007c). Similar enrichments in Ti, Ni, Cr, V, and HFSEs are observed in the mafic rocks of the Tlikakila Complex near Lake Clark, but these rocks all have higher Mg numbers ranging between 50 and 75 for similar compositions. They have been interpreted as primarily Late Triassic in age based on Norian fossils in sedimentary units (Wallace et al. 1989; Amato et al. 2007a), but the lower bounding age of plutonic rocks is inferred based on the sedimentary units, and thus it cannot be ruled out that some igneous components overlap with the Talkeetna Arc. Other lines of evidence such as Sr-Nd isotopes and detrital zircons (discussed later) suggest these rocks may not be directly correlative with the gabbro and basalt found in the Pebble district. Nevertheless, the elevated Ni (ca. 55–150 ppm) and Cr concentrations (ca. 115–465 ppm) in the Pebble basalt and gabbro distinguish them from the most primitive Late Cretaceous and younger intrusions in the district, which are basaltic andesites (Fig. 4). The Kahiltna flysch at Pebble also contains elevated Ni (ca. 27–34 ppm) and Cr (ca. 79–96 ppm) that likely reflects the composition of primitive regional mafic and ultramafic rocks as a detrital source.

Late Cretaceous igneous rocks. Late Cretaceous intrusions include three distinctive geochemical suites: high-K calc-alkaline sills, alkaline stocks and dikes, and the late high-K cale-alkaline Kaskanak batholith. The geochemical differences distinguishing the three suites are described further below. All intrusions are magnetite-bearing, oxidized, and range in composition from metaluminous to weakly peraluminous with aluminum saturation indices (A/CNK) ≤ 1.1 (Fig. 5). Trace elements are characterized by Nb, Ta, and Ti depletions typical of volcanic arcs (e.g., Ryerson and Watson 1987), and enrichments of large ion lithophile elements (LILE) and fluid-mobile elements (Sr, K, Cs, Rb, Ba, U, Th, Pb) compared to MORB (Fig. 6). The Sr/Y and La/Yb ratios of these intrusions are relatively low compared to porphyry deposit intrusions hosted by continental crust, but fall within typical ranges observed for porphyry deposit intrusions hosted by oceanic arc terranes (Fig. 7; Richards and Kerrich 2007). The V/Sc ratios of Late Cretaceous intrusions range from 10 to 160 and, except for the mafic end-members of the alkaline suite (<55 wt% SiO₂), are similar to or greater than the V/Sc ratios (10–20) typical of porphyry deposit magmas (Fig. 7; Loucks 2014). The V/Sc ratio increases gradually with increasing silica, which has been proposed by Loucks (2014) to reflect strongly oxidized magmatic conditions where significant vanadium occurs in oxidized V⁴⁺ and V⁵⁺ valences and behaves incompatibly in the melt. Most of the elevated V compositions are likely magmatic features, but a few samples have exceptionally elevated V concentrations up to 1600 ppm, likely as a result of hydrothermal enrichment (circled in Fig. 7). Hydrothermal enrichment of V in porphyry deposits has been proposed to preferentially occur in highly oxidized systems and where there has been considerable telescoping of the epithermal and porphyry hydrothermal footprints (Richards 1995; Loucks 2014).

The calc-alkaline diorite and granodiorite sills are the oldest and youngest pre-mineral intrusions in the district, respectively, and are temporally associated with alkaline intrusions (Lang et al. 2013; Olson 2015). The diorite and granodiorite sills have many similar trace element contents suggesting common origin that includes elevated Ti, Y, Yb, and P compared to other local Cretaceous and Tertiary rocks (Figs. 5 and 6). The diorite sills have...
Figure 5. Selected major oxide (wt%) and trace element (ppm) variation as a function of SiO$_2$ (wt%). Samples with an Ishikawa Alteration Index > 60 (Large et al. 2001) were not included in plots of Sr and the A/NCK index. Symbols as in Figure 4.

much higher V, Sc, and Ni contents, a larger negative Eu anomaly, lower HFSE (Nb, Ta, Zr, Hf), and lower LREE (La, Ce) compared to the granodiorite sills (Figs. 5, 6, and 7). A single porphyritic andesite intrusion immediately west of the Pebble deposit closely shares trace element characteristics with the granodiorite sills and may be genetically related, but it differs from other rare occurrences of porphyritic andesite dikes sampled on the flanks of the Kaskanak batholith. Collectively, the geochemical differences among the pre-mineral calc-alkaline intrusive rocks may result from both greater differentiation and minor assimilation of the Kahiltna flysch or mafic basement rocks.

The lithologically diverse alkalic suite includes monzodiorite and monzonite ranging from 50 to 67 wt% SiO$_2$, and pyroxenite with 42 wt% SiO$_2$. The HFSE and REE concentrations of the alkali suite are mostly lower than the calc-alkaline sills and similar to the Kaskanak granodiorite (Figs. 6 and 8). Early monzodiorite stocks are spatially associated with biotite pyroxenite bodies interpreted as cogenetic cumulates. The biotite pyroxenite
cumulates have similar middle rare earth element (MREE) slopes and abundances to other alkalic intrusions, but they are relatively depleted in both light and heavy rare earth elements consistent with accumulation of MREE-enriched clinopyroxene. The biotite pyroxenite cumulates have concentrations of Ti, Ni, and Cr similar to other alkalic rocks, which are much lower than the concentrations observed in the basalt and gabbro roof pendants. Rare shoshonite dikes also occur and have similar compositions to the monzodiorite stocks (Fig. 4), but they contain accumulated magnetite (up to 5–7 vol%) and abundant rafts of plagioclase and clinopyroxene (Table 1). They also have large positive whole-rock Eu anomalies indicating they may have assimilated plagioclase-rich rocks and/or accumulated plagioclase. Early to late monzonite porphyry dikes crosscut the biotite pyroxenite cumulate rocks, and some late monzonite porphyry dikes locally crosscut associated magmatic-hydrothermal diatreme breccias. Some late monzonite porphyries contain rare titanite (Table 1) and have whole-rock Eu anomalies that change from small negative anomalies to positive anomalies with magmatic differentiation. This change is also observed during differentiation from Kaskanak granodiorite to the most evolved granite porphyry (Fig. 8).

The bulk of the Kaskanak batholith is calc-alkaline granodiorite in composition with volumetrically minor amounts of porphyritic andesite dikes and a series of more differentiated granodiorite to granite porphyry dikes (Olson 2015). The porphyritic andesite dikes and granodiorite of the Kaskanak batholith have 56–67 wt% SiO₂ and overlap in major and trace element compositions with alkalic suite having the same SiO₂ contents. Many of the porphyritic andesite dikes occur along the flanks of the Kaskanak batholith and have been weakly affected by sodic-calcic alteration resulting in reduced alkalis and LILE (Fig. 6). A sample of porphyritic andesite in the 1 Gold Zone contains the lowest SiO₂ and was chosen as a potential parental magma for purposes of modeling the Kaskanak batholith magmatic evolution (discussed later). The more silicic and younger Kaskanak granodiorite and granite porphyry dikes (67–77 wt% SiO₂) lie along the same trends in variation and spider diagrams, but are evolved to lower transition metal (Mg, Fe, Cr, Sc), HFSE, and REE concentrations (Figs. 6, 7, and 8). The most differentiated granite porphyry dikes are REE-poor, have a pronounced concave upward chondrite-normalized REE profile, and have a range from no Eu anomaly to a moderate positive Eu anomaly in the most silicic compositions (Fig. 8). For all the Kaskanak batholith intrusions, Sr/Y ratios range from 20–65 (from volcanic arc to adakitic composition) and La/Yb ratios range from 4–16 (normal volcanic arc) with the highly evolved porphyries having the highest ratios; note that Sr has been significantly depleted in many hydrothermally altered samples, which are excluded from the reported Sr/Y ratios (Fig. 7). The V concentrations and V/Sc

Figure 6. Trace element spider diagrams for Late Cretaceous igneous rocks of the Pebble district normalized to N-MORB (Sun and McDonough 1989). (a) Early alkalic and calc-alkalic <57 wt% SiO₂; (b) early alkalic and calc-alkalic >57 wt% SiOc₂; (c) Kaskanak granodiorite and porphyritic andesite dikes; (d) granodiorite and granite porphyries of the Kaskanak batholith.
Figure 7. Rayleigh fractionation models for crystallization of 0 to 50 wt% hornblende (green line) and 0 to 1.0 wt% for titanite (blue line) illustrated on plots (a) Sr/Y vs. Y and (b) La/Yb vs. Yb. The model uses the porphyritic andesite dike starting compositions and partition coefficients listed in Tables 3 and 4. Note that most porphyry intrusions are somewhat hydrothermally altered and have low-Sr/Y ratios as a result of likely Sr loss. Nonetheless, the freshest samples have Sr/Y < 65 and lie in both the adakitic and normal arc fields of Richards and Kerrich (2007). Vanadium and scandium behaviors depart from one another as illustrated in (c) V and Sc vs. SiO₂, and (d) V/Sc vs. SiO₂. Vanadium has incompatible behavior at elevated silica likely because of V⁴⁺ and V⁵⁺ formed under highly oxidized magmatic conditions (see text for details). The elevated V concentrations of circled samples may likely be due to hydrothermal enrichment. Symbols as in Figure 4 or as labeled.

Radiogenic isotopes

The Sr and Nd isotopic data from this study include 1 sample from a gabbro roof pendant, 10 samples from Late Cretaceous intrusions, and 1 sample from a Paleocene andesite dike (Table 2). Initial ⁸⁷Sr/⁸⁶Sr and ¹⁴⁷Nd/¹⁴⁴Nd ratios were calculated at 180, 90, and 65 Ma, respectively, and are compared to other Sr and Nd isotopic data for Late Cretaceous and Paleocene igneous rocks.
from the Pebble deposit (Fig. 9; Ayuso et al. 2013; Goldfarb et al. 2013). Initial 87Sr/86Sr and 143Nd/144Nd isotopic compositions of all rocks from this study have a range of 0.70329–0.70424 and 0.51270–0.51284 (εNd = +4.4 to +6.1), respectively, and where other data are included, the total range is 0.70329–0.70554 and 0.51257–0.51287 (εNd = +1.0 to +6.3), respectively.

The data are broadly comparable, however, Ayuso et al. (2013) reported εNd values for Cretaceous rocks (εNd = +1.0 to +4.5) that are mostly lower than the εNd values from Goldfarb et al. (2013) and this study combined (n = 20, εNd = +4.4 to +6.3). Photos of several samples of drill core analyzed by Ayuso et al. (2013) contain xenoliths of the Kahiltna flysch (εNd = –1 to –5; Aleinikoff et al. 2000). Inclusion of the Kahiltna flysch clasts in analyzed samples or local melting of the Kahiltna flysch by Pebble intrusions would both result in anomalously low-εNd values such as those reported by Ayuso et al. (2013).

Subdividing the total data set of igneous rocks at Pebble into Jurassic, Cretaceous, and Paleocene/Eocene subsets (87Sr/86Sr ratios = 0.70338, 0.70329–0.70467, 0.70348–0.70354, respectively; 143Nd/144Nd ratios = 0.51270, 0.51257–0.51284, 0.51274–0.51287, respectively; and εNd values = 5.7, 1.0–6.3, 3.7–6.2, respectively), the least radiogenic isotopic compositions all overlap suggesting little change of the isotopic composition of melts from the source region with time. The isotopic spread toward more radiogenic values is apparently from variable amounts of assimilation of the Kahiltna flysch, the only radiogenic source identified in the region.

Trace element concentrations in zircon and titanite

Zircons that grow from arc magmas have very low LREE and strongly elevated HREE concentrations with distinctive positive Ce and negative Eu anomalies (Figs. 10 and 11). Zircons that grow from mineralized intrusions are typically characterized by larger positive Ce anomalies and smaller negative Eu anomalies than barren intrusions, which reflect the elevated magmatic oxidation states (ΔNNO+1 to +3) in the mineralizing intrusions (Ballard et al. 2002; Dilles et al. 2015). Additionally, small Eu anomalies may be accentuated by the suppression of plagioclase crystallization in hydrous melts (Ballard et al. 2002; Hoskin and Schaltegger 2003; Trail et al. 2011; Dilles et al. 2015). Extensive amphibole, pyroxene, or minor titanite fractionation may also increase the Yb/Gd ratio of the melt (Kay and Mpodozis 2001; Richards and Kerrich 2007) and thus increase the Yb/Gd ratio of late crystallizing zircon.

Zircons trace elements from intrusions in the Pebble district are plotted in Figure 10. Zircons from the diorite sills and Kotkuli Mountain granodiorite have very low-Eu/Eu* values (mostly

Figure 8. Rare earth element spider diagrams for Late Cretaceous igneous rocks of the Pebble district normalized to chondrite (McDonough and Sun 1995). (a) Early alkalic and calc-alkalic <57 wt% SiO2; (b) early alkalic and calc-alkalic >57 wt% SiO2; (c) Kaskanak granodiorite and porphyritic andesite dikes; (d) granodiorite and granite porphyries of the Kaskanak batholith.
≤0.3), low-Ce/Nd ratios (≤22), and low-Yb/Gd ratios (≤18) suggesting significant plagioclase-dominated fractionation, and are the least prospective in terms of porphyry copper fertility. Zircons from the alkalic monzonite porphyry appear to be spread toward lower temperatures with lower recorded concentrations of Hf and elevated Ce/Nd ratios. A possible contaminant could be the calc-alkaline granodiorite sills, but no definitive field evidence has documented magma mingling of these intrusions. The granodiorite sills, like the Kaskanak batholith, have lower temperature zircons, elevated Yb/Gd ratios (26–54), very high-Eu/Eu* anomalies (0.7–1.1), and very high-Ce/Nd ratios (up to 126), and thus have a very fertile zircon trace element signature. No known mineralization is associated with the granodiorite sills, which may be a result of volatile loss coeval with the formation of large diatreme breccias (Figs. 2 and 3). Other barren Paleocene andesite and dacite dikes also have perspective Eu anomalies (0.6–1.0), but have moderate Ce/Nd ratios (7–53) and lower Yb/Gd ratios (16–33). All intrusions of the mineralized Kaskanak batholith have fertile zircon trace element signatures with high Eu/Eu* values (0.4–1.1), high Ce/Nd ratios (up to 152), and elevated Yb/Gd ratios (13–56) owing to extensive fractionation of amphibole and titanite under hydrous and oxidized magmatic conditions.

Titanite in the Pebble district is present in all phases of the Kaskanak batholith and occurs sparsely in some of the unaltered samples of monzonite porphyries of the alkalic suite. Outside the hydrothermal footprint, the Kaskanak granodiorite contains abundant titanite (0.5–2.0 vol%) and ubiquitous, but minor zircon (<0.05 vol%). Titanite contains high concentrations of REE and HFSE (Y, Zr, Hf, Nb, Ta, Th, and U), and titanite analyzed from the Kaskanak granodiorite contains >100 times more REE and 10–100 times more HFSE than whole-rock compositions (Fig. 11g, Appendix D). Because of the abundance of titanite and its high concentrations of HFSE and REE, mass balance dictates that the vast majority of the whole-rock HFSE and REE content resides in titanite.

The REE and HFSE contents of unaltered titanites are generally zoned and decrease from core to rim sympathetic with Y decrease from 6000 to 2000 ppm (Fig. 12). Generally, titanite chondrite-normalized REE patterns range from convex “seagull-shaped” to concave “U-shaped” profiles (e.g., DyCN/YbCN < 1; Figs. 11c and 12f). This observed preferential depletion of middle REE relative to light and heavy REE is due to the larger partition coefficients for the middle REE compared to light and heavy REE (Table 3; Bachmann et al.
Figure 10. Zircon trace element data from LA-ICP-MS and SHRIMP-RG analyses. (a) Yb/Gd vs. Th/U demonstrating suppression of the MREE with crystallization. (b) Ti-in-zircon temperatures vs. Hf using the formulation of Ferry and Watson (2007). (c) Eu anomaly vs. Hf, and (d) Ce/Nd vs. Hf. Eu/Eu* anomalies ≥0.4 are characteristic of most porphyry copper deposit occurrences (Ballard et al. 2002; Dilles et al. 2015). Symbols as in Figure 4.
At low-Y contents of 300 to 2000 ppm, the REE and HFSE content and Zr-in-titanite temperature vary broadly (Fig. 12), as described above, and are not well correlated with Y content. For example, Nb and Th strongly decrease sympathetic with the decrease of Y from early titanite cores to rims presumably as a result of titanite removing these elements from the melt, but increase sharply in some late cores and rims. These late cores and rims have relatively high Nb, Th, Nb/Ta, and Zr-in-titanite temperatures (Fig. 12). Some of these analyses correspond with observed titanite resorption features and rim overgrowths (Fig. 11a).

Table 2.—Extended

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>143Nd/144Nd</th>
<th>2σ</th>
<th>Calc 147Sm/144Nd</th>
<th>143Nd/144Nd</th>
<th>εNd</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH12-314-103</td>
<td>0.512909</td>
<td>12</td>
<td>0.1810</td>
<td>0.512696</td>
<td>5.65</td>
</tr>
<tr>
<td>3121-1080</td>
<td>0.512873</td>
<td>12</td>
<td>0.1547</td>
<td>0.512782</td>
<td>5.07</td>
</tr>
<tr>
<td>GH12-312-42.5</td>
<td>0.512887</td>
<td>14</td>
<td>0.1432</td>
<td>0.512803</td>
<td>5.48</td>
</tr>
<tr>
<td>10478-515</td>
<td>0.512895</td>
<td>13</td>
<td>0.1266</td>
<td>0.512820</td>
<td>5.82</td>
</tr>
<tr>
<td>3082-862</td>
<td>0.512856</td>
<td>12</td>
<td>0.1375</td>
<td>0.512775</td>
<td>4.93</td>
</tr>
<tr>
<td>7375-3310</td>
<td>0.512891</td>
<td>13</td>
<td>0.1348</td>
<td>0.512812</td>
<td>5.65</td>
</tr>
<tr>
<td>10500-650.5</td>
<td>0.512868</td>
<td>12</td>
<td>0.1398</td>
<td>0.512785</td>
<td>5.13</td>
</tr>
<tr>
<td>11528-1412</td>
<td>0.512911</td>
<td>14</td>
<td>0.1391</td>
<td>0.512830</td>
<td>6.00</td>
</tr>
<tr>
<td>7385-2410</td>
<td>0.512891</td>
<td>15</td>
<td>0.1501</td>
<td>0.512802</td>
<td>5.47</td>
</tr>
<tr>
<td>8443-1978</td>
<td>0.512887</td>
<td>13</td>
<td>0.1313</td>
<td>0.512810</td>
<td>5.62</td>
</tr>
<tr>
<td>2047-778</td>
<td>0.512898</td>
<td>14</td>
<td>0.1052</td>
<td>0.512836</td>
<td>6.12</td>
</tr>
<tr>
<td>7385-2821</td>
<td>0.512840</td>
<td>14</td>
<td>0.1451</td>
<td>0.512778</td>
<td>4.37</td>
</tr>
</tbody>
</table>

Figure 11. (a) BSE image of titanite with a resorption feature (white arrow) and overgrowth rim from the Kaskanak granodiorite implicating complicated late-stage growth of titanite rims. (b) BSE image of hornblende from the Kaskanak granodiorite also with zoned rims. Preservation of zoning in hornblende from plutonic rocks suggests the melts cooled relatively quickly. (c) Chondrite-normalized trace element compositions of titanite from the Kaskanak granodiorite. (d) Representative REE and HFSE contents of titanite, zircon, and whole-rock normalized to chondrite. Chondrite values from McDonough and Sun (1995).
Ti-in-zircon and Zr-in-titanite temperatures

Ti-in-zircon and Zr-in-titanite temperatures of Late Cretaceous rocks are calculated and plotted in Figures 10b and 12a. The calculations assume activities of TiO₂ and SiO₂ of 0.7 and 1.0, respectively; and titanite crystallization pressure of 0.2 GPa for the Kaskanak batholith (see Methods for further details). The results of Ti-in-zircon temperature estimates for Late Cretaceous pre-mineral diorite sills, monzonite porphyries, and granodiorite sills are all relatively hot (930–730 °C; Fig. 10b). For the younger Kaskanak batholith intrusions, Ti-in-zircon and Zr-in-titanite temperature estimates are in agreement (Figs. 10b and 12a) and suggest zircon and titanite crystallized together at lower magmatic temperatures (760–680 °C). Some titanite cores and many titanite rim analyses, however, reflect higher temperatures (up to 800 °C) at relatively low-Y and REE concentrations (Fig. 12) and record anomalous trace element compositional variance, reflecting complicated late-stage magmatic processes correlated with fluctuations in temperature.

Trace elements of inherited zircons

Inherited zircons are relatively abundant in Late Cretaceous intrusions in the district, especially in the early monzonite porphyries of the alkalic suite (commonly >95% inheritance) and the diorite and granodiorite sills (commonly >50% inheritance). The histograms of inherited zircons indicate that Cretaceous ages dominate with progressively fewer Jurassic and Triassic ages, and 12% Paleozoic ages as old as Cambrian (Fig. 13b). All inherited zircons exhibit normal oscillatory zoning textures, elevated Th/U ratios (e.g., ≥0.4), and REE abundances consistent with an original igneous source. The maximum values of Eu/Eu*, Yb/Gd, and Ce/Nd occur <200 Ma during the Jurassic–Cretaceous periods (Figs. 13c–13e). In contrast, the most reduced values occur in the Permian to Triassic periods from ~300 to 200 Ma (Figs. 13d–13e) consistent with timing of late Skolai arc magmatism (~290–320 Ma; Fig. 1) and the Nikolai greenstone flood basalts (~240–250 Ma) within the Wrangellia terrane (Beard and Barker 1989). Pennsylvanian to Cambrian inheritance has slightly larger Eu/Eu* and Ce/Nd values, and much larger Yb/Gd ratios. Apart from these periods, inherited zircons show a general decrease in Eu/Eu* and Ce/Nd values.
from the Skolai arc intrusions, the sources for many of these older zircons are unknown, and their trace element composition suggests derivation from more oxidized and fractionated melts than the Permian to Triassic zircons.

DISCUSSION

The geochemical composition of Late Cretaceous magmatic arc rocks that developed after suturing of the WCT to the North American continental margin in the Iliamna region is more evolved than the older pre-to syn-collisional Jurassic Talkeetna Arc basement rocks. Late Cretaceous to Eocene intrusive rocks are alkaline to high-K calc-alkaline with elevated LILEs and HFSEs compared to the Talkeetna Arc magmatic rocks that range from tholeiitic to calc-alkaline compositions (Greene et al. 2006). Late Cretaceous intrusions have a larger range of La/Yb and Sr/Y ratios (La/Yb = 5–18; Sr/Y = 20–55) compared to the Talkeetna Arc volcanic rocks (La/Yb = 2–5; Sr/Y = 3–30; Clift et al. 2005). Sr/Y ratios of Late Cretaceous intrusions overlap the adakite field (Fig. 7a), but Late Cretaceous and Jurassic magmatic rocks both lack adakite-like La/Yb ratios >20 (Fig. 7b; Richards and Kerrich 2007). Late Cretaceous to Eocene igneous rocks also have large arc-like depletions in Nb, Ta, and Ti compared to the Talkeetna Arc volcanic rocks. These depletions become more pronounced with arc maturation consistent with the findings of Amato et al. (2007b). In sharp contrast, Pebble gabbro and basalt roof pendants, inferred to be Jurassic in age, lack these depletions. Chondrite-normalized REE profiles and low-La/Yb ratios of all regional intrusions are consistent with volcanic arc magmatism developed in a relatively thin crust where heavy REE-rich garnet was not stable. Residual garnet or garnet fractionation would significantly increase the observed La/Yb and Sr/Y ratios if present (Kay and Mpodozis 2001). The crustal thickness during Cretaceous to Eocene magmatism is unknown, but likely is similar or less than the modern crustal thickness estimate of 30 km for the Iliamna Quadrangle based on gravity surveys (Barnes 1977) and therefore crustal garnet would be unlikely. The most primitive Late Cretaceous igneous rocks exposed in the region are shoshonite to andesite in composition (Fig. 4), similar to other arc suites developed in thin crust. These rocks likely originated via hybridization of mantle-derived and lower crustal melts (Hildreth and Mooirath 1988; Annen et al. 2006). The most mafic Paleocene and Eocene magmatic rocks share a similar range from differentiated basaltic andesite to andesite, but are locally all calc-alkaline in composition. In contrast, mafic end-members of the Jurassic Talkeetna Arc commonly contain more abundant primitive basalts, gabbros, and gabbronorites.
(Detterman and Reed 1980; DeBari and Sleep 1991; Nokleberg et al. 1994; Clift et al. 2005; Greene et al. 2006). Nonetheless, the primitive Talkeetna arc magmas were contaminated by some older crustal components on the basis of slightly radiogenic initial Sr and Nd isotopes (Fig. 9), and inherited Paleozoic zircons in both the West Talkeetna Mountains and the Alaska Peninsula (Clift et al. 2005; Greene et al. 2006; Rioux et al. 2007, 2010). In comparison, the Pebble Late Cretaceous intrusions may have also assimilated older Paleozoic crust from the roots of the Peninsular terrane, but also variably assimilated the Late Jurassic–Early Cretaceous Kahiltna flysch and possibly some Jurassic arc basement rocks on basis of inherited zircons and Sr and Nd isotopes.

Source region and crustal assimilation

The magnitude of crustal assimilation by Late Cretaceous intrusions is difficult to constrain without context for possible sources. Inherited (xenocrystic) zircons provide a robust line of evidence for crustal assimilation and provide evidence for the age of unexposed basement rocks in the region. Most of the inherited zircons in Late Cretaceous intrusions in the Pebble district are likely sourced from the Kahiltna flysch. However, some monzonite porphyry intrusions contain predominantly Early Devonian–Pennsylvaniaan xenocrystic zircons that suggest contributions from basement rocks. The lack of inherited Proterozoic zircons rules out contributions from the Intermontane superterrane and restricts inherited zircons to a WCT origin. Nonetheless, anomalously Proterozoic and few Archean zircons have been found east of Lake Clark in detritus associated with the Tlikakila Complex (Amato et al. 2007a) and within xenoliths in Mount Redoubt volcanic rocks (Bacon et al. 2012). Possible sources of recycled Paleozoic zircons within the Peninsular terrane in SW Alaska include Paleozoic pelitic and quartz-mica schists, which are discontinuously exposed as roof pendants in Triassic and younger plutons between the southern margins of the Western Alaska Range (Csejtyi et al. 1978; Nokleberg et al. 1994; Amato et al. 2007c) and north side of the Border Ranges fault system (Nokleberg et al. 1994). Some Pennsylvaniaan to Early Permian zircons may be derived from Skolai Arc plutons (Aleinikoff et al. 1988; Gardener et al. 1988; Beard and Barker 1989) that are exposed to the east in the Wrangellia and Alexander terranes of the Talkeetna and East Alaska ranges (Fig. 1). Nonetheless, Skolai Arc plutons may form basement that underlies the Kahiltna flysch in the SW Alaska Range as indicated by Pennsylvanian gabbroic xenoliths in volcanic rocks from Mt. Redoubt (Fig. 1; Bacon et al. 2012). Inherited Paleozoic zircons are also reported from Jurassic plutonic rocks along the Alaska Peninsula (Amato et al. 2007a), volcanic tuffs of the Kamishak and Talkeetna Formations (Pálfy et al. 1999), and in some Jurassic plutons in the Western Talkeetna Mountains (Rioux et al. 2007).

Sr and Nd isotopic ratios are generally primitive and restricted in range for melts throughout the WCT due to its youth and overall primitive composition relative to average continental crust. Nonetheless, some Jurassic and older basement rocks have slightly elevated Sr isotopic ratios exhibiting initial $^{87}\text{Sr}/^{86}\text{Sr} > 0.7050$ (Fig. 9) that are likely caused by metasomatic alteration by connate fluids during greenschist facies metamorphism in the WCT (Detterman and Reed 1980; Nokleberg et al. 1994; Wallace et al. 1989; Amato et al. 2007a). In contrast, initial $^{87}\text{Sr}/^{86}\text{Sr}$ ratio ranges of 0.70329 to 0.70452 and initial $^{143}\text{Nd}/^{144}\text{Nd}$ ratio ranges of 0.51257 to 0.51284 are primitive and very restricted in Late Cretaceous and younger intrusions, which are not metamorphosed in the Pebble district (Fig. 9). The Nd isotopic compositions ($\varepsilon_{\text{Nd}} = +4.6$ to $+6.3$) of any of the intrusions in the district, including those of the Talkeetna Arc, are not likely affected by external hydrothermal fluids because Nd is an immobile element, and thus a more robust tracer of radiogenic contamination. The Nd isotopic data from these intrusions overlap with those of the Talkeetna Arc volcanics in the West Talkeetna Mountains and along the Alaska Peninsula (Fig. 9; Rioux et al. 2007, 2010). In the Pebble district, the Sr and Nd isotopic compositions are similar for the Kaskanak granodiorite and the gabbro roof pendants interpreted as Jurassic in age (Fig. 9c). In contrast, older Triassic gabbros of the Tlikakila Complex located 100 km to the northwest (Wallace et al. 1989; Amato et al. 2007a) have quite variable Nd isotopic compositions ($\varepsilon_{\text{Nd}} = -1.2$ to $+9.3$), likely due to crustal contamination by an unknown radiogenic source, which are consistent with the observations of inherited Proterozoic and Archean zircons and the inferred metasomatic alteration by connate fluids noted above. Because inherited Proterozoic zircons are rare in Talkeetna Arc magmatic rocks (Pálfy et al. 1999; Amato et al. 2007c) and are absent from all of the Late Cretaceous to Eocene intrusions in the Pebble district, it is inferred that very little, if any, ancient continental crust exits beneath the Pebble district.

The primary contamination difference between the Jurassic and older basement rocks and the Late Cretaceous to Eocene igneous rocks is that the latter was contaminated by the Late Jurassic–Early Cretaceous Kahiltna flysch, the principal exposed country rock to the intrusions. Note that the Kahiltna flysch is more radiogenic than the Talkeetna Arc and the Tlikakila Complex, which are representative of the basement rocks from which the flysch is partially derived (Fig. 9). To constrain the amount of assimilation of the Kahiltna flysch required for Late Cretaceous and Paleocene intrusions, two-component mixing models (Faure 1998) were calculated between three selected igneous samples and an average composition of the Kahiltna flysch with isotopic compositions recalculated to both 90 and 65 m.y. ago to reflect the age of the mixing (Fig. 9; Appendix 1 E). Note that the Kahiltna flysch isotopic composition at 65 Ma would be slightly more radiogenic than at 90 or 125 Ma (Fig. 9a). The Sr isotopic data utilized for the Kahiltna flysch from Aleinikoff et al. (2000) ($^{87}\text{Sr}/^{86}\text{Sr}_{125 \text{ m.y.}} = 0.70549–0.70715$) overlaps with a single Sr isotopic analysis of the flysch locally at Pebble ($^{87}\text{Sr}/^{86}\text{Sr}_{125 \text{ m.y.}} = 0.70554$; Ayuso et al. 2013) and is therefore approximately representative. The three igneous end-members in the models include: (1) Kaskanak granodiorite, (2) a diorite sill, and (3) a Paleocene monzonite porphyry dike (see Appendix 1 E for trace element and isotopic compositions). The least radiogenic Late Cretaceous or Paleocene sample composition recorded in the district ($^{143}\text{Nd}/^{144}\text{Nd}_{125 \text{ m.y.}} = 0.512844$, $\varepsilon_{\text{Nd}} = +6.3$) is assumed to represent the minimum isotopic enrichment for homogenized parental melts supplied from the lower crust for the region and was utilized as the starting isotopic composition for the igneous rocks in the mixing models. The curvature of
the mixing models (Fig. 9b) reflects the whole-rock Sr and Nd composition of the igneous samples relative to the composition in the Kahiltna flysch (i.e., the susceptibility of the intrusions to be isotopically contaminated by the Kahiltna flysch). The εNd, vs. 1/Nd plot (Fig. 9c) suggests that maximum assimilation of the Kahiltna flysch by Late Cretaceous or Paleocene intrusions was predominantly minor (<20 wt%), except in the case of some narrow monzonite dikes or granodiorite sills that likely have assimilated up to 50 wt% locally. If a more radiogenic composition for the Kahiltna flysch is utilized (Fig. 9a), as might be the case for flysch stratigraphically high in the Kahiltna basin or closer to the suture zone with the Intermontane superterrane to the north, then the mixing-models would require a smaller percentage of assimilation of the flysch. Based on these models, the Kaskanak granodiorite is one of the least-radiogenic samples in the district (see Fig. 9c) and likely assimilated very little Kahiltna flysch (<10 wt%). Therefore, minor assimilation of the Kahiltna flysch likely had little effect on the fertility of Late Cretaceous melts.

Oxidation recorded by zircons

Among the REEs, only Ce$^{3+,4+}$ and Eu$^{2+,3+}$ occur in multiple valence states under natural magmatic conditions and thus may be used to monitor relative changes in the oxidation state of the melt. They are particularly useful in highly oxidized magmatic systems where other monitors (e.g., Fe-Ti oxides) are not applicable. Progressive oxidation during magmatic evolution and cooling has been documented in several porphyry environments (Ballard et al. 2002; Dilles et al. 2015). Chondrite-normalized Eu/Eu* and Ce/Nd, a proxy for chondrite-normalized Ce/Ce*, are used here to monitor the relative oxygen state of the melt upon late-stage zircon saturation (Olson 2015; Lu et al. 2016). Eu/Eu* values ≥0.4 are typical of most porphyry Cu deposits and reflect oxidized and hydrous arc magmas (Ballard et al. 2002; Dilles et al. 2015). Ce/Nd (and Ce/Ce*) ratios are also generally elevated and reflect oxidized conditions of mineralized porphyry intrusions, but overlap with data from barren intrusions and thus are not as effective as Eu/Eu* for discriminating melt fertility. For example, Ce/Nd ratios of zircons from mineralized porphyries in the Chuquicamata district range from 0 to 77 compared to barren, older intrusions of the Montecristo Intrusive Complex, which have a range of 2 to 12 (Ballard et al. 2002). However, these mineralized porphyries contrast sharply with the range of zircon Ce/Nd ratios from mineralized intrusions in the neighboring Los Picos-Fortuna district of similar age. In the Los Picos-Fortuna district, mineralized porphyry intrusions have zircon Ce/Nd ratios ≤7 and pre-mineral barren intrusions completely overlap having ratios ranging from 2 to 10 (Ballard et al. 2002). Lu et al. (2016) also reported overlapping Ce/Nd ratios for zircon that range from 2 to 100 for intrusions genetically associated with porphyry Cu±Mo±Au deposits and 0 to 40 from unrelated barren magmatic suites. We interpret the reported large range of Ce/Nd ratios in zircons from both barren and mineralized intrusions to reflect complications of varying oxidation states of melts in equilibrium with zircon and the presence of fractionating accessory minerals that sequester the REE$^{3+}$ during late-stage differentiation and zircon crystallization (cf. Grimes et al. 2015). Titanite or apatite fractionation, for example, may modify the Ce anomaly by suppressing REE$^{3+}$ from the melt.

In the Pebble district, nearly all mineralized intrusions of the Kaskanak batholith have zircon Eu/Eu* ratios >0.4 (Fig. 10). Pre-mineral Cretaceous and post-mineral Paleocene intrusions in the district have similar zircon Eu/Eu* values that suggests they also were hydrous and oxidized arc magmas. However, there is a clear distinction with regards to the diorite sills and the granodiorite of Koktuli Mountain that show consistently low-

Effects of titanite crystallization

Titanite, a common accessory mineral in relatively oxidized plutonic rocks, generally has a crystallization temperature of <780 °C (Dilles 1987; Wones 1989; Piccoli et al. 2000; Mazdab and Wooden 2007; Mazdab et al. 2008) and occurs in many crystal-rich volcanic rocks (e.g., Fish Canyon Tuff; Bachmann and Bergantz 2008). In the Kaskanak batholith, titanite is the most abundant accessory mineral phase and the major sink for HFSEs and REEs. Magmatic titanite strongly incorporates all REEs, particularly the MREEs, with partition coefficients at low-magmatic temperatures of 700–800 °C that range between 100–1000 (Bachmann et al. 2005; Colombini et al. 2011). Unlike early crystallization or fractionation of amphibole or pyroxene, minor crystallization or fractionation of titanite can extremely depress the REE content of the melt and the relative proportions of each REE, and therefore readily effects geochemical proxies such as Sr/Y and La/Yb ratios (Bachmann et al. 2005; Richards and Kerrich 2007; Glazner et al. 2008; Colombini et al. 2011). During solidification of Kaskanak granodiorite, late-stage titanite fractionation reduces the HFSE and REE of remaining melt and together with other crystallizing minerals is responsible for differentiation to produce the most evolved and silicic granodiorite to granite porphyry dikes that are HFSE- and REE-poor (Figs. 6 and 8).

Crystal fractionation modeling of the Kaskanak batholith

Simple Rayleigh fractionation models are used here to assess lower-crustal and late-stage upper-crustal differentiation of the Kaskanak batholith. The most primitive Late Cretaceous rock compositions observed in the district include small volumes of shoshonite and porphyritic andesite dikes, the latter, which are spatially and temporally associated with the Kaskanak batholith (Olson 2015). These porphyritic andesite dikes represent a very small proportion (<1%) of the exposed Kaskanak batholith, suggesting most magmatic differentiation and maturation occurred in the deep or middle crust from which magma batches periodically rejuvenated the intermediate to felsic crystal mushes in the shallow crust.

Model A: Differentiation of andesite parental melts

Rayleigh fractionation modeling of a parental andesite composition to produce the Kaskanak granodiorite was undertaken for a series of trace elements (Model A; Table 3) A best fit
[$\Sigma(R^2) = 5.5$, excluding Sr] was obtained by minimizing the residuals of most selected trace elements within 0–10% of the observed daughter melt composition (Table 4). The model is largely constrained by observed mineral phases and Sc, Y, Nb, P$_2$O$_5$, and REE, but the model fails to adequately describe Sr, which is readily affected by hydrothermal alteration (Fig. 14a). Model A also invokes up to 0.18 wt% allanite in the bulk cumulus that is required to reduce the LREE, whereas apatite, another LREE-bearing phase, is restricted by phosphorus (Fig. 14e). Allanite is rarely observed in these rocks (Olson 2015), possibly due to hydrothermal alteration to epidote. According to the model, ~10–14 wt% crystal fractionation of a hornblende diorite bulk cumulus with 54.5 wt% amphibole, 32.5 wt% plagioclase, 7.7 wt% magnetite, and 5.1 wt% apatite and 0.18 wt% allanite could produce the observed range of granodiorite compositions (Fig. 14). Note that amphibole fractionation produces a minor depression of REE contents when the rhyolitic partition coefficients from Mount Mazama, Oregon, are applied (Bacon and Druitt 1998; Model A in Fig. 14f). The progressively greater depletions of Nb and REE are observed in the evolution sequence from the Kaskanak granodiorite to granite porphyry, which have an order of magnitude reduction in REE contents. Such depletions cannot be obtained by fractionation of any assemblage of high-temperature crystallizing minerals, such as Model A, and instead require fractionation of Nb- and REE-enriched titanite.

Figure 14. Rayleigh fractionation Models A and B for trace element evolution of the Kaskanak batholith using starting compositions, mineral-melt partition coefficients, and bulk compositions listed in Tables 3 and 4. Black lines show fractionation paths in 2 wt% intervals for 1 to 14 wt% fractionation of a high-temperature assemblage for Model A (hornblende-plagioclase-magnetite-apatite-allanite) and 0 to 20 wt% fractionation of a lower-temperature assemblage for Model B (hornblende-plagioclase-magnetite-apatite-titanite-zircon). See text for details. (a) Sr vs. Sc, (b) Y vs. Sc, (c) Nb vs. Sc, (d) Zr vs. Sc, (e) P$_2$O$_5$ vs. Sc, and (f) chondrite-normalized REE spidergrams (McDonough and Sun 1995) for selected rock compositions and the observed range of granodiorite to granite compositions (gray field). Symbols of observed compositions as in Figure 4. Note that early fractionation of hornblende-rich assemblage A provides a good fit for early differentiation, but the titanite-bearing assemblage B is required to produce the large observed REE and HFSE depletions observed in the most silicic late porphyries.
Estimating Nb and REE partition coefficients for titanite.

To model the effect of titanite-fractionation on melt, we necessarily constrained the partition coefficients for titanite in the Kaskanak granodiorite (Table 3). In general, titanite partition coefficients (Kd) are poorly constrained for intermediate-felsic, metaluminous, low-temperature (e.g., 700–800 °C) calc-alkaline magmas, and published results for such compositions are highly variable and few in number (e.g., Bachmann et al. 2005; Colombini et al. 2011). We estimated titanite partition coefficients for the Kaskanak granodiorite from measured titanite-wt/whole-rock concentrations utilizing only high-Y (>2000 ppm) titanite core analyses because the early high-Y titanite crystallized from a melt whose trace element content was initially most similar to whole-rock (Table 3). These high-Y titanite cores are apparently unaffected by complicated late-stage magmatic processes (Fig. 12). We recognize that the whole-rock composition of the Kaskanak granodiorite from which titanite was analyzed is not likely representative of the melt in equilibrium with titanite during its growth, and thus our calculated partition coefficients are approximate. We infer that our titanite partition coefficients are relatively accurate for the REEs and HFSEs where the concentrations in titanite are much greater than the melt and are underestimated for compatible elements (e.g., Sr, Sc) that occur dominantly in other major mineral phases (e.g., plagioclase, amphibole, and magnetite).

Model B: Differentiation of the Kaskanak batholith. Rayleigh fractionation described in Model B addresses the second stage of low-temperature differentiation of the Kaskanak granodiorite to produce the observed compositional range of granodiorite and granite porphyries. The best fit for Model B [Σ(R^2) = 2.9] produces residuals within 0–10% of the observed daughter composition for most of the selected trace elements (Table 4). The model estimates 16–20 wt% crystal fractionation of a bulk composition of 61.2 wt% amphibole, 28.0 wt% plagioclase, 2.7 wt% magnetite, 6.2 wt% apatite, 1.8 wt% titanite, and 0.07 wt% zircon (Fig. 14). The most differentiated granodiorite porphyry and quartz gneiss compositions shown in Figure 14f may also require additional apatite and allanite fractionation to suppress the LREE.

Eu and Ce anomalies revisited. A conclusion that results from the modeling is that fractionation of titanite, and to a lesser degree amphibole or apatite, can cause the Eu anomaly of the bulk rock to change from a small negative anomaly (Eu/Eu* < 1) to a small positive anomaly (Eu/Eu* > 1) because the fractionating assemblage incorporates REE^3+ preferentially to Eu^2+ (Fig. 14f). In general, positive Eu anomalies are not observed from whole-rock compositions, however; except for the modest positive anomalies in the most differentiated leucocratic granite porphyry dikes (Fig. 8d). Since a majority of the Eu in the melt occurs as Eu^2+ over the range of natural oxygen fugacities of volcanic arc melts (e.g., Wilke and Behrens 1999), a likely explanation for this discrepancy between observed and modeled Eu contents is the oxidation of Eu^2+ to Eu^3+ in highly oxidized systems (Dilles et al. 2015) so that additional Eu^3+ is incorporated by titanite. Note that the abundance of Eu or Ce in the melt is minuscule compared to the abundance of other oxidizing and reducing species and when the REE^3+ are highly suppressed by titanite fractionation, a change in the Eu^2+/Eu^3+ or Ce^4+/Ce^3+ ratios would not likely facilitate a change the oxidation state of the melt (i.e., the oxidation state of the melt is buffered). The likely result is that some of the remaining Eu^2+ and Ce^4+ is converted to a 3+ valence by equilibration with the melt. This affect would buffer the Eu anomaly of the melt near neutrality in oxidized systems, and could potentially decrease the Ce anomaly recorded in zircons (Fig. 10d) as titanite would diminish the partitioning of Ce^3+ into zircon. Additional factors that could affect the oxidation state of the melt and the observed zircon Eu and Ce anomalies include the addition of new oxidizing or reducing species such as Fe^{2+} or S^2- via assimilation of wall rocks or by the introduction of new melt by convection or recharge (Chambefort et al. 2008, 2013). Additionally, late-stage breakdown of magmatic anhydrite or sulfate bearing melt species to liberate SO_3 as a volatile species could increase the oxidation state of the melt (Dilles et al. 2015). Each of these scenarios are important to consider when critically evaluating the potential fertility of a given melt based on these redox-sensitive proxies.

Late Cretaceous petrogenesis and fertility

Late Cretaceous plutonic rocks in the Pebble district have a >300 km^2 areal extent and upper crustal volumes likely exceeding 1500 km^3. They represent one of the best delineated Cretaceous igneous complexes identified in the SW Alaska Range. Major and trace element geochemistry, petrographic evidence, Ti-in-zircon estimates, and redox-sensitive proxies (e.g., zircon Eu anomalies, whole-rock V/Sc ratios) document evolution over a ~10 m.y. period from early, high-temperature, intermediate composition, moderately oxidized and hydrous melts to late low-temperature, silicic composition, and strongly oxidized and hydrous melts associated with ore formation. The earliest (~99–98 Ma) pre-mineral intrusions of diorite and monzodiorite contain minorly differentiated to intermediate SiO_2 contents, crystallized at relatively high temperatures (~930–730 °C Ti-in-zircon, Fig. 10), included both calc-alkaline and alkaline compositions, and were only modestly hydrous and oxidized (e.g., pyroxene-biotite-magnetite ± amphibole-bearing and likely ilmenite-poor or -free). The youngest and most evolved alkaline intrusions include monzonite porphyry dikes that contain magnetite and titanite assemblages reflecting more strongly oxidized conditions (Wones 1989). By the end of pre-mineral magmatism at ~95 Ma, parental melts had evolved to form the calc-alkaline hornblende-biotite granodiorite sills. The abundant amphibole in these sills indicates an evolution toward higher (>4 wt%) water contents. Eu/Eu* anomalies and large Ce/Nd ratios of zircons in the granodiorite sills indicate they were both highly oxidized and hydrous enough to suppress early plagioclase fractionation (Ballard et al. 2002; Dilles et al. 2015).

After an approximately 4 m.y. magmatic gap, the Kaskanak batholith was emplaced between 91–89 Ma. Early phases include equigranular granodiorite and seral small porphyritic andesite dikes that were followed by a succession of more evolved porphyries, which were emplaced contemporaneously with ore formation (Lang et al. 2013; Olson 2015). The Kaskanak batholith makes up more than 60% of the footprint of Late Cretaceous plutonic rocks currently mapped in the Pebble district and has an inferred volume of ~900 km^3. If the northern contact of the batholith were extended beneath cover 25 km further
to the northeast as proposed by Anderson et al. (2014) based on 3D inverse magnetic modeling, then the volume could be significantly larger (3–5×). Where the Kaskanak batholith is mapped, it is dominated by a mineral assemblage of hornblende, plagioclase, quartz, magnetite, and titanite. Together, this assemblage requires strongly hydrous and oxidized conditions that are notably consistent with the small Eu anomaly and large Ce anomaly of zircons. Zircon and titanite geothermometry indicate that these minerals crystallized at low temperatures of 680 to 800 °C similar to Ti-in-zircon temperatures estimates of other porphyry magmas (Dilles et al. 2015), and are consistent with differentiation of Kaskanak granodiorite to granite porphyry by the fractionating assemblage defined in Model B (Table 3), which includes titanite. Ore-forming fluids are therefore closely associated with low-temperature and crystal-rich magma, and consistent with fluid saturation and separation from magma via cooling and crystallization (Burnham 1979).

The long lifespan and potentially the fertility of the Kaskanak batholith requires periodic injections of hot melts. Evidence for such injections are directly recorded in the trace element variations and Zr-in-titanite temperature increases in zones with low Y <2000 (see Figs. 11 and 12). Hornblende rims are also commonly zoned (Fig. 11b) and have implications for the pressures (i.e., depth) of crystal growth and the rate of cooling upon final emplacement. Zoned hornblende is uncommon for plutonic igneous rocks where hornblende zonations may diffuse and homogenize when held at magmatic temperatures for extended periods of time (e.g., Houston and Dilles 2013). Instead, these zoned amphiboles also are supportive of periodic injections of melt into the shallow crust where the melt cooled relatively rapidly to preserve these textures.

The overall progressive evolution of Kaskanak batholith to more silicic compositions starts from early small volumes of andesite to a dominant volume of granodiorite to late small volumes of granite and subordinate andesite. This progression suggests that melt injections were primarily dacitic and progressively more differentiated with time. There is no clear evidence for Cretaceous basaltic magmas in the upper crustal environment exposed today, and subordinate porphyritic andesite dikes are the only intermediate magmas exposed that were emplaced contemporaneously with the Kaskanak batholith. Nonetheless, it is likely that primitive hydrous basalt or andesite melts contributed water, ore metals, and sulfur to the silicic melts of the Kaskanak batholith leading to the formation of one of the largest porphyry Cu-Au-Mo deposits in the world. We infer that the transfer of components from mafic to silicic melts via assimilation-fractional crystallization and recharge in a MASH or hot zone likely occurred in the deep crust. The low La/Yb and modest Sr/Y ratios suggest the MASH zone was in the base of thin crust (<30 km), and the high-temperature fractionating assemblage (Model A) had a composition equivalent to hornblende gabbro, which requires water-rich melts.

Implications

Protracted magmatic activity is a common feature of porphyry copper mineral belts where mineralized intrusions are commonly the culmination of long-lived magmatic activity (Seedorff et al. 2005; Chiaradia et al. 2009; Sillitoe 2010; Richards 2011). In the Pebble district, magmatic activity spanned ~10 m.y. and culminated over the last 2 m.y. with the emplacement of the Kaskanak batholith (Lang et al. 2013; Olson 2015). Increased fertility associated with protracted magmatism in the Pebble district may be related to increased subduction components (e.g., water) supplied to the mantle wedge to promote partial melting. The initial hydrous, relatively oxidized, and potentially sulfate-rich (cf. Chambeafort et al. 2008, 2013) basaltic melts likely included both alkaline and calc-alkaline compositions. They probably differentiated in the lower- to mid-crustal MASH or hot zones via fractionation and early removal of magnetite and amphibole and partial suppression of plagioclase to produce cooler highly oxidized, hydrous calc-alkaline andesite to dacite melts that ascended to the middle and upper crust.

Pebble, together with Grasberg, Bingham, and Kerr-SulfuratsMitchell, are among a handful of large porphyry deposits that have large endowments of copper, gold, and molybdenum. Seedorff et al. (2005) noted this porphyry metal association for both monzonitic Cu (Mo-Au) and tonalitic-granodioritic Cu-(Au-Mo) magma compositions and noted gold associated with syenitic and dioritic magma compositions. Gold-rich porphyry deposits are therefore broadly correlated with alkaline and intermediate composition magmas, which is the case at Pebble, Bingham, and Kerr-SulfuratsMitchell. Molybdenum, however, is well-known to be enriched in porphyry deposits that have more evolved melt compositions.

Why Pebble is both a gold-rich (~0.3 ppm) and a molybdenum-rich (~250 ppm) porphyry copper deposit is not completely resolved, but some inferences can be made. Many of the porphyry, epithermal, and intrusion-related deposits hosted in the volcanic arc crust of the Wrangellia composite terrane of southern Alaska are commonly gold-rich, so Pebble is not unique. We propose that chalcophile element enrichment of both copper and gold is an inherent part of the highly oxidized hydrous and sulfur-rich basalt magmas where oxidized conditions stabilize sulfate and minimize reduced sulfur, so that formation and fractionation of immiscible sulfide melt is inhibited (Carroll and Rutherford 1987, 1988; Keith et al. 1997; Tosdal et al. 2009; Chambeafort et al. 2008, 2013; Dilles et al. 2015). Under more reduced conditions, copper- and gold-rich sulfide melt would form and potentially fractionate to reduce copper and gold contents of the magma and make it infertile (Botcharnikov et al. 2013; Li and Audétat 2013). Alternatively, interactions of hydrous and oxidized basalt in the MASH zone with Triassic and Jurassic mafic crystalline rocks and ultramafic cumulates may have been a possible source of sulfide and trace metal enrichment. In the Kenneccott district in southeast Alaska (Fig. 1), for example, some of the world’s highest grade copper-(silver) ores ever mined are thought to be scavenged from the Triassic Nikolai Greenstone host-rocks in the Wrangellia terrane (MacKevitt et al. 1997). In south-central Alaska, gabbroic rocks of the Jurassic Talkeetna Arc are also locally enriched in base metals such as Cr, Ni, and Cu (DeBari and Sleep 1991; Greene et al. 2006), and in the Pebble district, gabbro roof pendants contain magmatic sulfide and bulk-compositions containing up to 50 ppm Ni and 350 ppm Cu. An identifiable crustal source for gold is elusive. Gold content is near crustal abundance and is not anomalous in the Nikolai Greenstone of the Wrangellia terrane nor in the Jurassic gabbro and basal roof pendants and Late Cretaceous biotite
pyroxene cumulates in the Pebble district where the rocks are unaffected by significant hydrothermal alteration.

The primitive Sr and Nd isotopic compositions of Pebble magmas preclude the presence of old and silicic Mo-enriched continental crust underlying much of the SW Alaska Range, except for perhaps near the suture zone. Rather, molybdenum must ultimately be derived from partial melting of the mantle wedge or from assimilation of older Mesozoic mafic to intermediate arc crust of the Peninsula terrane. Neither source is typical of porphyry deposits with abundant molybdenum. The Cretaceous pre-mineral alkalic magmas at Pebble may have provided Mo-enrichment to the crust because alkalic magmas are commonly enriched in Mo (Carten et al. 1993; Seedorff et al. 2005). Nonetheless, both the long-time scale of igneous processes, and the strong differentiation from inferred hydrous basalt to andesite and mineralizing granodiorite to granite melts would have enriched Mo in end-stage granite porphyry intrusions because of the incompatible behavior of Mo in melts (Candela and Holland 1986). The requirement of multiple events of hot silicic melt recharge followed by cooling and crystallization would have additionally enriched Mo in the latest melts.

The Pebble deposit therefore appears to have formed via relatively typical arc-magmatic processes developed in relatively thin and primitive mafic to intermediate crust. It is related to strongly oxidized hydrous magmatism that extended over a period of 10 m.y. Episodic magma recharge, and assimilation and fractional crystallization are implicated in production of late-stage granodiorite to granite melt compositions with inferred elevated water, sulfur, chloride, Cu, Au, and Mo contents. Cooling and crystallization led to further magmatic differentiation and emplacement of multiple generations of porphyry dikes with each episode accompanied by magmatic-derived ore fluids. These implications are largely inferred from whole-rock trace element and isotope geochemistry, mineral geochemistry, and crystal fractionation modeling constrained by petrographic observations.

ACKNOWLEDGMENTS

The authors thank the many geologists employed by the Pebble Partnership who facilitated core sampling and logging, and provided necessary logistical support for the project. We thank Matt Cobe and Joe Wooden of the USGS-Stanford SHRIMP-RG lab for assistance with data processing and interpretation. We greatly thank Eric Seedorff and an anonymous reviewer for their feedback, which greatly improved this manuscript. Additionally, we thank fellow OSU VIPER faculty and students for thoughtful discussions and support. This research was supported by the Pebble Partnership, and in part by NSF Grants EAR-1049792 and EAR-1447730.

REFERENCES CITED

