Visible, near-infrared, and mid-infrared spectral characterization of Hawaiian fumarolic alteration near Kilauea’s December 1974 flow: Implications for spectral discrimination of alteration environments on Mars

Marcella Yant1,*+†, Kelsey E. Young3, A. Deanne Rogers1, Amy C. MacAdam2, Jacob E. Bleacher2, Janice L. Bishop3, and Stanley A. Mertzman4

1Department of Geosciences, Stony Brook University, Stony Brook, New York, U.S.A.
2NASA Goddard Space Flight Center, Greenbelt, Maryland, U.S.A.
3SETI Institute, Mountain View, California, U.S.A.
4Earth and Environmental Department, Franklin and Marshall College, Lancaster, Pennsylvania, U.S.A.

Abstract

The December 1974 flow in the SW rift zone at Kilauea Volcano, Hawaii, has been established as a Mars analog due to its physical, chemical, and morphological properties, as well as its interaction with the outgassing plume from the primary Kilauea caldera. We focus on a solfatara site that consists of hydrothermally altered basalt and alteration products deposited in and around a passively degassing volcanic vent situated directly adjacent to the December 1974 flow on its northwest side. Reflectance spectra are acquired in the visible/near-infrared (VNIR) region and emission spectra in the mid-infrared (MIR) range to better understand the spectral properties of hydrothermally altered materials. The VNIR signatures are consistent with silica, Fe-oxides, and sulfates (Ca, Fe). Primarily silica-dominated spectral signatures are observed in the MIR and changes in spectral features between samples appear to be driven by grain size effects in this wavelength range. The nature of the sample coating and the thermal emission signatures exhibit variations that may be correlated with distance from the vent. Chemical analyses indicate that most surfaces are characterized by silica-rich material, Fe-oxides, and sulfates (Ca, Fe). The silica and Fe-oxide-dominated MIR/VNIR spectral signatures exhibited by the hydrothermally altered material in this study are distinct from the sulfate-dominated spectral signatures exhibited by previously studied low-temperature aqueous acid-sulfate weathered basaltic glass. This likely reflects a difference in open vs. closed system weathering, where mobile cations are removed from the altered surfaces in the fumarolic setting. This work provides a unique infrared spectral library that includes martian analog materials that were altered in an active terrestrial solfatara (hydrothermal) setting. Hydrothermal environments are of particular interest as they potentially indicate habitable conditions. Key constraints on the habitability and astrobiological potential of ancient aqueous environments are provided through detection and interpretation of secondary mineral assemblages; thus, spectral detection of fumarolic alteration assemblages observed from this study on Mars would suggest a region that could have hosted a habitable environment.

Keywords: Glass, infrared, Mars, Hawaii; Earth Analogs for Martian Geological Materials and Processes

Introduction

The martian surface has a complex history that includes volcanic activity and widespread aqueous alteration (e.g., Bell 2008), likely including hydrothermal environments. Hydrothermal environments are of particular interest as they potentially indicate habitable conditions, due to their ability to provide microbial communities with water and energy in an otherwise cold/arid environment (e.g., Costello et al. 2009). On Earth, fumarolic activity can support microbial life including mat-like photoautotrophic communities (e.g., mosses and liverworts) (Costello et al. 2009), autotrophic communities (e.g., mosses, liverworts, algae, fungi, lichens) (Halloy 1991), and halophilic Archaea (single-celled microorganisms) (Ellis et al. 2008). Thus, detection of fumarolic environments on Mars would suggest a region that could have hosted a habitable environment.

Key constraints on the habitability and astrobiological potential of ancient aqueous environments are provided through detection and interpretation of secondary mineral assemblages, which vary with alteration conditions (e.g., temperature, pH, fluid-to-rock ratio). Alteration assemblages that were potentially derived from hydrothermal systems have been detected in situ on Mars at Gusev Crater and Meridiani Planum (e.g., Squyres et al. 2007, 2012; McCollom and Hynek 2005; Schmidt et al. 2008; Yen et al. 2008; Arvidson et al. 2014). The search for hydrothermal systems on Mars has been extended to other locations using orbital measurements of reflectance and emission spectra, which are sensitive to mineral species and abundance. For example, detections of silica from orbit have been used to identify potential fumarolic or near-surface hydrothermal activity (e.g., Bishop et al. 2008; Milliken et al. 2008; Ehmann et al. 2009;
Figure 2. Thermal emission signatures of the collected samples grouped based on similarities of dominant spectral features into (a) Group 1, silica-dominated, (b) Group 2, Ca-sulfate-dominated, (c) Group 3, Fe-sulfate-dominated, and (d) Group 4 (silica/Fe-oxide-dominated). The reflectance spectra are separated into groups based on the MIR groups established in panels a–d. (e) Group 1, (f) Group 2, (g) Group 3, and (h) Group 4. Vertical lines indicate features discussed in text. The spectra have been offset along the y-axis for clarity. Gp = gypsum, Ah = anhydrite, Ak = akaganéite, MI = melanterite, Al = alunogen, Cq = coquimbite, Hm = hematite. The library spectra used here were not measured in this study and include silica sinter, microporous silica, amorphous silica (Ruff et al. 2011), gypsum (Lane 2007), coquimbite (Lane et al. 2015), alunogen (Lane, unpublished), and hematite (Christensen et al. 2000) for the MIR. In the VNIR, the library spectra include basaltic glass (Yant et al. 2016), silicic acid, opal-CT (Rice et al. 2013), gypsum (RELAB ID: C1JB55), akaganéite (RELAB ID: 397F212D), melanterite (RELAB ID: CASF44), copiapite (RELAB ID: C1JBA51), and anhydrite (RELAB ID: C1JB641A). (Color online.)
als, however, based on the shape of the features near 0.98, 1.19, 1.4, and 1.9 μm, these spectral bands may indicate the presence of hydrated silica in our samples.

In general, the features present in the reflectance spectra are similar within the groups of samples, however there are some variations. In Group 1-1, the spectra exhibited deep silica features in the MIR. Although influence from silica is observed for all five samples in the VNIR, a broad absorption in the 0.92–1.06 μm range is also exhibited, consistent with Fe²⁺-sulfate (melanterite) and/or Fe-oxide (akaganéite), or perhaps an iron impurity within the silica phase or mineral mixing (Fig. 2e). The shoulder near 0.53 μm observed for HI_15_MHY_001 and Solf_002_1 may also indicate influence from Fe-oxides. Overall, MHY_001, Solf_001_1, and Solf_002_1 display shallow features consistent with basaltic glass along with some influence from opal-CT near 1.91 and 2.25 μm, whereas MHY_002a and MHY_002b exhibit deeper features primarily consistent with opal-CT. Additionally, MHY_001 and Solf_002_1 exhibit negative spectral slopes and a concave nature, possibly due to thin coatings and/or fine grain size (e.g., Fischer and Pieters 1993) or due to acidic leaching of glass (Horgan and Bell 2012). Group 1-2 exhibited shallowed silica features in the MIR. Again all of the VNIR spectra in this group are consistent with the presence of silica, however all of these samples also exhibit influence from Fe-oxide (akaganéite) and/or trace iron impurity, near 0.44, 0.53, and/or 0.98 μm (Fig. 2e). The feature near 0.44 could also be due to the presence of Fe²⁺-sulfate (melanterite) and/or Fe³⁺-sulfate (copiapite or jarosite). The features observed near 1.45, 1.91, and 2.25 μm for the samples in this group are consistent with opal-CT.

The MIR signatures for Group 1-3 were silica-dominated, but with severe shallowing of the 1240 cm⁻¹ feature. The VNIR signatures for both samples in this group are influenced by silica, exhibiting features consistent with opal-CT (1.45, 1.91, 2.25 μm) (Fig. 2e). Both samples included in this group also display features that may be due to the presence of Fe-oxide (akaganéite), near 0.53 and 0.98 μm. The shifted silica features observed for Group 1-4 in the MIR correspond with a VNIR signature dominated by silica and Ca-sulfate (Fig. 2e). The shape of the feature near 1.45 μm is most consistent with Ca-sulfate (gypsum) along with the absorption near 1.76 μm. The feature near 2.25 μm is most consistent with opal-CT. Group 2 is Ca-sulfate-dominated in the MIR, and exhibits features dominated by Ca sulfate (gypsum, near 1.45, 1.76, and 1.94 μm) with some influence from silica near 2.25 μm and silicic acid near 0.98 and 1.19 μm (Fig. 2f). The reflectance features of the Group 3 spectrum are consistent with Ca-sulfate (gypsum or bassanite, near 1.45 and 1.93 μm) in the VNIR with opal likely as well due to the broadness of these bands, lack of 1.76 μm feature, and the presence of a feature near 2.25 μm (Fig. 2g). The last group exhibits influence from silica and Fe-oxide in the MIR. The reflectance signature for Group 4 is also consistent with adsorbed water bands observed for hydrated silica (1.16, 1.45, 1.76, and 1.93 μm) and Fe-oxide (near 0.96 μm). Akaganéite provided the best match from the Fe-oxide library spectra used in this study, as it contains characteristic Fe²⁺ absorptions near 0.44, 0.59 (shoulder), and 0.92 μm (Bishop et al. 2015); however, we did not observe the expected H₂O band near 1.95–2.0 μm or OH band near 2.46 μm, so akaganéite cannot be a dominant component. This sample also may display influence from Fe²⁺-sulfate (melanterite) and/or Fe³⁺-sulfate (copiapite, jarosite) near 0.44 μm (Fig. 2h).

Linear least-squares analysis was used to model the averaged thermal emission spectra for each group. A full table of the modeling results is available in the Supplementary Material (SI 1). The phases listed as minor are below the detection limits of this method and may not be present. The MIR Group 1-1 also had a silica-dominated modeled assemblage, but lower amounts of sulfate and minor Fe-oxide were used by the model to improve the fit (Fig. 3a). The shallowed silica features exhibited by MIR Group 1-2 also resulted in a silica-dominated modeled assemblage, but with influence from sulfate, clay (montmorillonite, Fe/Al-smectite), and minor sulfur (Fig. 3b). The relatively poor fits for Groups 1-3 and 1-4 indicate non-linear mixing likely due to small particle sizes, and poorly crystalline components. An Fe²⁺-sulfate-Al-sulfate-dominated modeled assemblage (Fig. 3c) was observed for Group 1-3, contrasting the silica-dominated grouping. The shifted silica features observed for MIR Group 1-4 still produced a silica-dominated modeled assemblage, but with influence from Fe-oxide and sulfur (Fig. 3d). The modeled spectrum for MIR Group 2 resulted in a Ca-sulfate-dominated assemblage with influence from silica (Fig. 3e). The Fe³⁺-sulfate-dominated model fit for MIR Group 3 is relatively poor, as with Groups 1-3 and 1-4 and is likely influenced by particle size effects (Fig. 3f). Last, the modeled assemblage for the MIR Group 4 is dominated by silica and Fe-oxide with influence from sulfate (Fig. 3g), consistent with the silica/Fe-oxide-dominated grouping.

Chemical and mineralogical analyses

SEM analyses were only acquired for the HI_15_MHY samples and thus only these samples are discussed (no data was collected for Group 1-3 or Group 3) using secondary electron images. The Group 1-1 samples all exhibit similar silica-dominated surfaces (Figs. 4a–4c). The surface of HI_15_MHY_001 is characterized by a Si-rich leached coating, overlying a glass with considerable Al, Ca, Mg, and Fe (Fig. 4a). HI_15_MHY_002 is also dominated by a Si-rich coating (Fig. 4b), with some Fe-sulfates and Ca-sulfates observed sparsely. A Si-Ti-Fe-rich surface coating is also observed, but is not as pervasive as the Si-rich surface. A Si-rich surface is also observed for HI_15_MHY_002b, overlying a glass similar to that observed for HI_15_MHY_001 (Fig. 4c). The samples from Group 1-2 also exhibit a Si-rich coating, but are consistent with other materials (Figs. 4d–4e). HI_15_MHY_003 has a Si-rich surface, with Ca-sulfate present in some areas (Fig. 4d). HI_15_MHY_005 has a Si-rich surface with Fe-Ti-oxides and Ca-sulfate deposited on top (Fig. 4e). The surface of the only sample from Group 1-4, HI_15_MHY_007a, is characterized by Si-rich material and Ca-sulfate (Fig. 4f). With Group 2, the surfaces are less dominated by silica compared to Group 1. HI_15_MHY_007b exhibits centimeter-sized clasts of Si-rich material (Fig. 4g) and Ca-sulfates (Fig. 4h). For Group 4, the surface of HI_15_MHY_006 is characterized by Si-rich material overlain considerably by Fe-Ti-oxides (Fig. 4i).

The results from the XRD analyses are listed in Table 2.
glass, silica, allophane, imogolite, or other amorphous materials that result in a characteristic hump in the XRD pattern. Crystalline silica is referring to crystalline polymorphs of SiO$_2$ (e.g., tridymite and cristobalite), which have distinct XRD peaks. Small amounts of additional phases were observed for Group 1-2 (bixsite, Fe-oxides, zeolites, and K-sulfate), Group 1-3 (Fe-oxides), and Group 2 (Ca-sulfate, sulfur). The XRD patterns for all of these samples exhibited broad features consistent with an amorphous material such as amorphous silica, allophane, and/or basaltic glass. For three samples, the broad diffraction hump had a width of ~16 °20 and the center was shifted to lower °20 values (~23 °20), indicating material that is more Si rich than pure basaltic glass (Fig. 5). No halite was observed in these samples.

The XRF data has been separated into three groups based on chemical similarities determined using a minimum distance clustering algorithm on handheld XRF chemical data for each sample (Fig. 6a). This independent XRF-based grouping was done to compare how/if element-based compositional variability corresponds with spectrally determined variability. Chemical variations are most strongly driven by abundances of Si, Fe, and less so by Al and Ca. The abundance of Si is negatively correlated with Fe, Al, and Ca. The XRF Group 1 consists of samples HI_15_Solf_002_3 (MIR Group 1-3) and HI_15_Solf_003_2 (MIR Group 1-2) and displays relatively higher enrichment in Si and lower enrichment in Ca and Fe compared to the other groups. XRF Group 2 exhibits medium enrichment in Si, Fe, Al, and Ca and includes samples from MIR Group 1-1 (HI_15_MHY_001, HI_15_MHY_002a), Group 1-2 (HI_15_MHY_003, HI_15_MHY_005, HI_15_Solf_003_3), Group 1-4 (HI_15_MHY_007a), and Group 4 (HI_15_MHY_006). The XRF Group 3 includes samples from MIR Group 1-1 (HI_15_Solf_001_1, HI_15_Solf_002_1), Group 1-3 (HI_15_Solf_001_2), and Group 3 (HI_15_Solf_002_2) that display relatively low enrichment in Si and high enrichment in Al, Ca, and Fe. The Al vs. Si and Fe vs. Si plots (Figs. 6b–6c) display the negative correlations that were observed by the minimum distance clustering. These plots also indicate that the XRF compositional groupings of samples are not the same as the previous MIR groups, although there are some similarities.

DISCUSSION

Spectral detectability

Overall, the surfaces of the hydrothermally altered samples analyzed here are characterized by silica-rich material ± Fe-oxides and Ca-sulfate, based on chemical and mineralogical analyses (Table 2). Several XRD patterns exhibited amorphous humps centered near 24 °20; this position is consistent with an amorphous material that is more Si rich than basaltic glass (Fig. 5). Silica-rich materials generally have a narrower hump centered at lower positions near 25 °20, whereas basaltic glass generally has a broader hump centered at higher positions, near 31 °20 (Morris et al. 2015). This is consistent with MIR/VNIR data that showed amorphous silica contributed to the spectral shape for all samples. Although both the MIR/VNIR and handheld XRF data are detecting strong enrichments in Si or Si-bearing phases, compositional groupings of samples using each technique are not well correlated. This could be due to the sensitivity of the handheld XRF to chemical changes vs. MIR/VNIR spectroscopy, which are sensitive to mineral species and abundance. Likewise, minor alteration phases observed on sample surfaces in SEM images are often not exhibited in the XRD data due to the small contribution of the surface material to the bulk sample.

In general, the dominant surface phases are clearly identified in the VNIR and MIR spectral signatures; however, for some samples, the spectral models include large abundances of phases that are absent in SEM data. For example, the surfaces of samples HI_15_MHY_001 and HI_15_MHY_002b (Group...
1-1) are both characterized by a silica coating based on SEM analysis (Figs. 4a and 4c). However, in the MIR additional phases (sulfates and Fe-oxides) are needed to provide the best fit to the sample spectra (Fig. 3a). In addition, phyllosilicates (montmorillonite, Fe/Al-smectite) are included in the modeled assemblage for Group 1-2 (Fig. 3b) when none was observed on any of the sample surfaces. This phenomenon, as well as the poor fits to some of the modeled spectra (e.g., MIR Group 3), is likely due to the fine-grained nature of the weathered surfaces. Volume scattering and transmission through small grains or thin coatings can give rise to spectral features that are not well modeled by library spectra of pure, coarse-grained phases.

Differences in grain size also appear to be a major factor in the spectral differences between the samples in the MIR silica-dominated group (Group 1). SEM data was only collected for the HI\textsubscript{15\,MHY} samples and thus only these samples are discussed. The samples with the deepest features (Group 1-1; HI\textsubscript{15\,MHY\,001}, 002a, and 002b) all have continuous silica coatings with little to no fine-grained surface material (Figs. 4a–4c). However, the samples with shallow silica features (Group 1-2 and 1-4; HI\textsubscript{15\,MHY\,003}, 005, and 007a) have finer-grained surfaces (Figs. 4d–4f), and HI\textsubscript{15\,MHY\,005} and HI\textsubscript{15\,MHY\,007a} also have numerous cavities. Additionally, the shallow silica features could be due to a relatively low abundance of silica-rich material due to the presence of oxides and sulfates.

The variations observed between the subgroups of the silica-dominated thermal emission spectra appear to be correlated with distance from the volcanic vent. The distance was only measured for the HI\textsubscript{15\,MHY} samples and thus only these are discussed. The purest silica features were exhibited by the material farthest from the vent (Group 1-1, 19.0–18.0 m) with shallowing of silica features in the intermediate material (Group 1-2, 11.5–4.7 m), and shifting of features in the material closer to the vent (Group 1-4, 4.5 m). The material collected closest to the vent exhibited sulfate-dominated features (Group 2, 4.5 m and Group 3, 4.0 m).

Figure 4. Secondary electron images of HI\textsubscript{15\,MHY} samples: Group 1-1: (a) HI\textsubscript{15\,MHY\,001} exhibiting a Si-rich coating (cross) overlying an Al, Ca, Mg, Fe-rich glass (square), (b) HI\textsubscript{15\,MHY\,002a} exhibiting a Si-rich surface (cross), and (c) HI\textsubscript{15\,MHY\,002b} exhibiting a Si-rich coating (cross); Group 1-2: (d) HI\textsubscript{15\,MHY\,003} exhibiting Si-rich material (cross) and Ca-sulfate (square) and (e) HI\textsubscript{15\,MHY\,005} exhibiting Si-rich surface (cross), Ca-sulfate (square), Fe-Ti-oxide (circle); Group 1-4: (f) HI\textsubscript{15\,MHY\,007a} exhibiting Si-rich material (cross) and Ca-sulfate (square); Group 2: HI\textsubscript{15\,MHY\,007b} exhibiting (g) Si-rich clast and (h) Ca-sulfate rich clast; and Group 3: (i) HI\textsubscript{15\,MHY\,006} exhibiting Si-rich material (cross) and Fe-Ti-oxide (square).
Unfortunately, no fluid or gas measurements were available, and interpretation of the influence of changing gas composition cannot be determined at this time. The presence of sulfates could be due to a greater supply of sulfur near the vent, contributing to the formation of sulfates in the material closest to the vent or due to easier removal of mobile cations farther from the vent. The nature of the sample coating also appears to change with distance from the vent. Materials that exhibit leached surfaces are observed farther away from the vent (Groups 1-1, 19.5–18.0 m, Figs. 1b–1c) and may represent passive silica enrichment from removal of other elements during weathering (e.g., Morris et al. 2008; Yen et al. 2008). Generally, thicker silica encrustations are observed on samples located closer to the vent (Groups 1-2, 1-3, 1-4, 2, 3, and 4, 11.5–4.0 m, Figs. 1d–1i) and may partially result from silica precipitated during low water-to-rock aqueous alteration of the basalts by acidic aerosols supplied by the vent (e.g., Ruff et al. 2011). Furthermore, the shift of the silica feature from 1115 to 1100 cm

Many of the samples exhibited low abundances of Fe-oxides and sulfates in addition to silica in the chemical analyses (HI_15_MHY_002a, 003, 005, 006, 007a, and 007b, HI_15_Solf_003_3, Table 2). Although these low-abundance materials were not easily identifiable in many of the MIR signatures (Fig. 2) they were commonly distinguished in the VNIR range. The differences observed between the MIR and VNIR signatures are attributed to differences in mineral transparency between these two techniques and the nature of the alteration material. Some samples exhibit powdery surfaces that result in multiple surface scattering and reduced restrahlen features in the MIR (Hunt and Vincent 1968; Salisbury and Wald 1992; Mustard and Hays 1997), making it difficult to identify lower abundance phases. In addition, the fine grains and thin coatings that comprise the alteration material permit energy transmission through the grains/coatings (e.g., Hunt and Logan 1972; Clark and Roush 1984). This effect is enhanced in the VNIR due to the lower absorption coefficients in this range and increased importance of volume scattering (Salisbury and Wald 1992). This allows small abundance phases to be more easily detected in the VNIR and these may dominate the spectral properties.

The alteration phases observed here provide similar results to the previous works in Table 1. Here we observed MIR signatures dominated by silica and VNIR signatures influenced by silica, sulfate(s), and Fe-oxide(s). The phyllosilicate phases detected by Golden et al. (1993), Morris et al. (2000a), Schiffman et al. (2000), Bishop et al. (2007), and Hamilton et al. (2008) were only observed using linear least-squares modeling of the MIR data for Group 1-2 in abundances \(\leq 10\% \). Our results agree with the environmental conditions suggested by Schiffman et al. (2000), which attribute the development of opaline crusts to acidic conditions (\(\text{pH} < 6 \)) and clay mineral formation to more neutral conditions (\(\text{pH} 6.5–7.8 \)).

The global abundance and species of chemical alteration products on planetary surfaces are related to the starting composition of unaltered protolith, the style and duration of alteration processes, the fluid composition, the fluid-to-rock ratio (e.g., Tosca et al. 2004; Golden et al. 2005; Ming et al. 2006), and ultimately, to the preservation of those products in rocks and soils. Thus, detection and interpretation of alteration mineral assemblages is critical to deciphering the history of the Mars. However, amorphous material often forms as a product from the alteration of volcanic material and can cause difficulty in identifying additional alteration phases and obtaining quantitative abundances of alteration phases. Amorphous phases are an important component on Mars and have been observed in several occurances by the Chemistry and Mineralogy Instrument.
The presence of amorphous material was determined based on the appearance of a broad, diffuse peak than the narrow diagnostic peaks of well crystalline phases. This provides a challenge for identification because these phases lack long-range crystallographic order so analyses that depend on crystal structure (e.g., XRD) are non-unique. The fumarolic materials in this study may provide an analog for some of the amorphous phases on Mars, and the distinctive Si-rich features observed show that the addition of MIR/VNIR data helps to distinguish some of those materials.

Hydrothermal alteration on Mars

MIR and VNIR spectral analyses of hydrothermally altered Hawaiian basalts are presented here to enhance the understanding of the infrared spectral properties of weathered materials. The spectral shapes of the signatures acquired in this study can be applied to VNIR and MIR spectral data obtained from Mars to better constrain variability of weathering on a global scale. Based on our results, silica detections across both wavelength ranges are common from fumarolic alteration. However, we note that silica deposits are not limited to high-temperature and/or fumarolic processes (e.g., McLennan 2003; McAdam et al. 2008). For example, silica can form through acid fog weathering of basalt, with low water-to-rock ratios under near isochemical conditions (Tosca et al. 2004). Based on several chemical and mineralogical measurements made by landed missions (Clark 1993; Haskin et al. 2005; Ming et al. 2006; Clark et al. 2005; Morris et al. 2006), an acid fog environment has been proposed as a common and persistent alteration setting on the martian surface (Hurowitz and McLennan 2007; Hurowitz and Fischer 2014). Thus, it is useful to compare the spectral properties of silica-bearing samples from this fumarolic environment to those formed in a closed-system acid sulfate environment. Below, we compare the spectral characteristics of our samples to those from a previous study in which basaltic glass was subjected to low-temperature, isochemical weathering under low water-to-rock ratios (Yant et al. 2016).

In a previous study, sand-sized synthetic martian glass particulates were submerged in sulfuric-hydrochloric acidic solutions (pH 0–4) under low fluid-to-rock ratios (1:1) at ambient temperature and pressure (Yant et al. 2016). This system simulates an acid-fog environment that is considered closed due to the very low fluid-to-rock ratios. We use a laboratory environment because of the difficulty in determining how long a natural environment has been closed. In general, acid alteration on particles resulted in sulfate-dominated assemblages in the most acidic solutions (pH ≤ 1) that exhibited well-developed sulfate features, in the MIR, and strong 1.45, 1.95, and 2.40 μm features in the VNIR. Amorphous silica was present based on chemical analyses, but not as detectable in the MIR/VNIR
spectra. The results from Yant et al. (2016) contrast significantly with the silica-dominated assemblages observed for the majority of the samples in this study (Fig. 7).

The likely reason for the observed differences relates to open vs. closed system weathering. Sulfates, Fe-oxides, and silica are commonly identified as alteration products in martian analog studies (Table 1), and when present on the surface of substrates each contributes uniquely to the visual appearance and MIR/VNIR spectral signatures observed for these materials. In closed system weathering, as simulated by Yant et al. (2016), small volumes of acidic fluid react with the surface of the material resulting in a fluid enriched in the most soluble elements. A leached alteration rind, depleted in the most soluble elements, is left behind, and the fluid subsequently undergoes evaporation and deposits alteration minerals. Si⁴⁺ is relatively insoluble in low pH conditions (pH < 2–3) and basaltic cations are relatively mobile (e.g., El-Shamy et al. 1972; Minitti et al. 2007). This can result in basalt leaching or dissolution that could form a silica-enriched layer beneath the fluid containing the mobile cations. When the fluid is evaporated, in a closed system, salts containing the more mobile cations can precipitate on top of the silica-enriched layer. The formation of the sulfates overlying the silica layer results in a larger spectral signal from the sulfates relative to the silica. To form a sulfate-dominated assemblage, the fluid-to-rock ratio needs to be small enough that the soluble elements are not mobilized and are allowed to precipitate on top of the leached surface in a closed system (Hurowitz et al. 2006). Additionally, sulfates that are precipitated over a diffuse area can be remobilized by dew and/or rain, whereas silica coatings are less soluble and less likely to be removed.

If the system is open and the fluid can migrate, a silica or Fe-oxide-dominated assemblage can be formed (Dorn 2012; Chemtob and Rossman 2014). Chemtob and Rossman (2014) describe the formation of silica coatings on glassy basalts from Hawaii through reaction of acidic fluids in an open system using the following model. Fresh rock surfaces are wetted by rainwater or condensed water vapor. The fluid becomes acidified by volcanically derived liquids and reaction with this low pH fluid results in dissolution of the basalt. The basaltic cations are more soluble than the silica and the cations remain dissolved at low pH and the silica is precipitated in place. The fluid is mobilized carrying away the more soluble cations, leaving behind Ti and Fe³⁺, which have lower mobility and are deposited as Fe-Ti-oxides, in addition to the silica. Chemtob and Rossman (2014) suggest that this mobilization is facilitated by liquid water, possibly sourced from rainwater and condensed water vapor from nearby plumes. Silica can also be transported to the surface by fluids that penetrate to the interior of the basalt. As alteration continues over a period of years, episodes of dissolution-reprecipitation can result in the thickening of the silica layer and the remobilization of Fe and Ti to the surface, producing silica or Fe-oxide-dominated spectral signatures like those observed here. Additionally, Al behaves in a manner similar to Fe³⁺ and exhibits increased solubility in acidic conditions (Hurowitz et al. 2006) and could be expected to precipitate under the conditions shown here. Negative correlations were observed between Fe vs. Si and Al vs. Si in the XRF data (Fig. 6) supporting the interpretation that Fe and Al are both precipitating on top of the silica layers. The results shown here for the natural Hawaiian samples are in agreement with the model proposed by Chemtob and Rossman (2014).

Surfaces showing silica signatures in the VNIR and MIR provide the best candidates for potential fumarolic deposits. For

Figure 7. Comparison of the spectral signatures for the laboratory isochemically altered materials (sulfate-dominated) with the natural fumarolic altered materials (silica-dominated) in both the (a) MIR and (b) VNIR wavelength ranges. Red shaded areas correspond to sulfate-related features and blue shaded areas correspond to silica-related features. (Color online.)
example, hydrated silica has been identified in several locations through VNIR detections from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at Western Hellas (Bandfield 2008), plains near Melas Chasma and Juventae Chasma (Milliken et al. 2008), Isidis Basin (Ehlmann et al. 2009), Northern Syrtis Major (Ehlmann et al. 2009; Smith and Bandfield 2012), Toro Crater (Marzo et al. 2010), Nili Patera (e.g., Skok et al. 2010), Terra Sirenum (Wray et al. 2011), and Noctis Labyrinthus (Weitz et al. 2011). Hydrated silica has also been identified in MIR data from the Thermal Emission Spectrometer (TES) and Thermal Emission Imaging System (THEMIS) at Western Hellas Basin (Bandfield 2008) and along the dichotomy boundary (Bandfield and Amador 2016). Hydrothermal processes have been inferred for most of these regions; however, it is difficult to rule out other origins from orbital data alone. Nevertheless, this work provides strong support for those interpretations.

IMPLICATIONS

This work provides a unique infrared spectral library that includes martian analog materials that were altered in an active terrestrial solfatara (hydrothermal) setting. Hydrothermal environments are of particular interest as they potentially indicate habitable conditions. Among the techniques to detect potential hydrothermal/habitable conditions on Mars, visible and infrared spectroscopic remote sensing provides the greatest coverage at the highest spatial resolution, allowing for assessment of spatial and/or temporal variability in surface conditions. Key constraints on the habitability and astrobiological potential of ancient aqueous environments are provided through detection and interpretation of secondary mineral assemblages; thus, spectral detection of fumarolic alteration assemblages observed from this study on Mars would suggest a region that could have hosted a habitable environment. Alteration assemblages that were potentially derived from hydrothermal systems have been detected in situ on Mars at Gusev Crater and Meridiani Planum. Kraft et al. (2003) suggest that secondary amorphous silica may account for the spectral signatures observed for ST2, exhibiting the potential widespread nature of this type of alteration. Using the spectral library provided here, the search for hydrothermal systems on Mars can be extended to other locations using orbital measurements of reflectance and emission spectra, which are sensitive to mineral species and abundance.

ACKNOWLEDGMENTS

All fieldwork reported here that was conducted within Hawai‘i Volcanoes National Park (HVNP) was conducted under National Park Service (NPS) Scientific Research and Collection Permit HAVO-2012-SC110025 as part of NPS Study HAVO-00420. This work was supported by the RS4E node of NASA’s Solar System Exploration Virtual Institute. A.D.R. also acknowledges support from the Mars Fundamental Research Program (NNX13AG82G). The authors thank Steve Ruff for contributing to the research Virtual Institute. A.D.R. also acknowledges support from the Mars Fundamental Research Program NNX13AG82G. The authors thank Steve Ruff for contributing to the research Virtual Institute. A.D.R. also acknowledges support from the Mars Fundamental Research Program NNX13AG82G. The authors thank Steve Ruff for contributing to the research Virtual Institute.

REFERENCES CITED

Endnote:
1 Deposit item AM-18-16116, Supplemental Table. Deposit items are free to all readers and found on the MSA web site, via the specific issue’s Table of Contents (go to http://www.minsocam.org/MSA/AmMin/TOC/2018/Jan2018_data/Jan2018_data.html).