Quantitative measurement of olivine composition in three dimensions using helical-scan X-ray micro-tomography

MATTHEW J. PANKHURST1,2,3,4,#, NGHIA T. VO5, ALAN R. BUTCHER6,7, HAILI LONG6, HONGCHANG WANG7, SARA NONNI8, JASON HARVEY3, GUDMUNDUR GUDFINNSSON8, RONALD FOWLER9, ROBERT ATWOOD4,5, RICHARD WALSHAW10, AND PETER D. LEE10,11

1 Instituto Tecnológico y de Energías Renovables (ITER), 38900 Granadilla de Abona, Tenerife, Canary Islands, Spain
2 Instituto Volcánologico de Canaries (INvolcAN), 38400 Puerto de la Cruz, Tenerife, Canary Islands, Spain
3 School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, U.K.
4 Research Complex at Harwell, Rutherford Appleton Laboratories, Didcot, OX11 0FA, U.K.
5 Diamond Light Source Ltd., Didcot, OX11 0DE, U.K.
6 FEI, Stiklestadveien 1, 7041 Trondheim, Norway
7 Geological Survey of Finland, FI-02151 Espoo, Finland
8 Institute of Earth Sciences, University of Iceland, Reykjavik 101, Iceland
9 Scientific Computing Department, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, OX11 0QX, U.K.
11 Mechanical Engineering, University College London, Gower Street, London, WC1E 6BT, U.K.

ABSTRACT

Olivine is a key constituent in the silicate Earth; its composition and texture informs petrogenetic understanding of numerous rock types. Here we develop a quantitative and reproducible method to measure olivine composition in three dimensions without destructive analysis, meaning full textural context is maintained. The olivine solid solution between forsterite and fayalite was measured using a combination of three-dimensional (3D) X-ray imaging techniques, 2D backscattered electron imaging, and spot-analyses using wavelength-dispersive electron probe microanalysis. The linear attenuation coefficient of natural crystals across a range of forsterite content from ~73–91 mol% were confirmed to scale linearly with composition using 53, 60, and 70 kV monochromatic beams at I12-JEEP beamline, Diamond Light Source utilizing the helical fly-scan acquisition. A polychromatic X-ray source was used to scan the same crystals, which yielded image contrast equivalent to measuring the mol% of forsterite with an accuracy of <1.0%. X-ray tomography can now provide fully integrated textural and chemical analysis of natural samples containing olivine, which will support 3D and 3D+time petrologic modeling. The study has revealed >3 mm domains within a large crystal of San Carlos forsterite that varies by ~2 Fo mol%. This offers a solution to an outstanding question of inter-laboratory standardization, and also demonstrates the utility of 3D, non-destructive, chemical measurement. To our knowledge, this study is the first to describe the application of XMT to quantitative chemical measurement across a mineral solid solution. Our approach may be expanded to calculate the chemistry of other mineral systems in 3D, depending upon the number, chemistry, and density of end-members.

Keywords: Micro-computed tomography, densitometry, olivine, chemical composition

INTRODUCTION

Combining chemical and textural data from rocks is essential to understand their origins and formation. Integrating these petrologic data means being able to place chemical analyses within a spatial context, and vice versa. Conventional chemical analysis, however, or the preparation for it, destroys or modifies spatial context in some way. This study documents, using olivine, an advance in non-destructive, quantitative determination of composition that maintains full three-dimensional (3D) context.

Two-dimensional (2D) data using visible light and electron microscopy has underpinned virtually all study of rocks at the microscale. Quantitative measurement using optical properties of minerals have been used to investigate rocks for over 150 yr (Sorby 1858). It has also long been recognized that physical properties, some measurable by optical or X-ray diffraction analyses, can be used to estimate the chemical composition and vice versa (e.g., Jahanbagloo 1969; Poldervaart 1950). In more recent decades, electron microscopy has provided higher resolution and more analytical options, yet remains limited to 2D measurement. A 2D analysis requires cutting, grinding, and polishing of the sample, and, thus, the full spatial context for those observations is lost. Furthermore, the nature of conventional preparation and analysis is comparatively slow and expensive, representing a limitation to the gathering of large data sets.

MOTIVATION AND AIDS

The density of olivine can be calculated from its chemical composition and its linear attenuation of X-rays. It is, therefore, possible to derive chemical information from X-ray attenuation