A new emerald occurrence from Kruta Balka, Western Peri-Azovian region, Ukraine: Implications for understanding the crystal chemistry of emerald

GERHARD FRANZ1,*, OLEKSII VYSHNEVSKYI2, MICHAEL TARAN2, VLADIMIR KHOMENKO2, MICHAEL WIEDENBECK3, FERRY SCHIPERSKI1, AND JÖRG NISSEN4

1Institute for Applied Geosciences, Technical University Berlin, D-10587 Berlin, Germany
2The National Academy of Sciences of Ukraine, M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation, 34, Palladina av., Kyiv, 03142, Ukraine
3GFZ German Research Centre for Geosciences, Telegrafenberg, D-14473 Potsdam, Germany
4ZE Electron Microscopy, Technical University Berlin, D-10623 Berlin, Germany

ABSTRACT

We investigated emerald, the bright-green gem variety of beryl, from a new locality at Kruta Balka, Ukraine, and compare its chemical characteristics with those of emeralds from selected occurrences worldwide (Austria, Australia, Colombia, South Africa, Russia) to clarify the types and amounts of substitutions as well as the factors controlling such substitutions. For selected crystals, Be and Li were determined by secondary ion mass spectrometry, which showed that the generally assumed value of 3 Be atoms per formula unit (apfu) is valid; only some samples such as the emerald from Kruta Balka deviate from this value (2.944 Be apfu). An important substitution in emerald (expressed as an exchange vector with the additive component Al2Be3Si6O18) is (Mg,Fe2+)NaAl–1o–1, leading to a hypothetical end-member NaAl(Mg,Fe2+)Be3Si6O18 called femag-beryl with Na occupying a vacancy position in the structural channels of beryl. Based on both our results and data from the literature, emeralds worldwide can be characterized based on the amount of femag-substitution. Other minor substitutions in Li-bearing emerald include the exchange vectors LiNa2Al–1o–2 and LiNaBe–1o–1, where the former is unique to the Kruta Balka emeralds. Rarely, some Li can also be situated at a channel site, based on stoichiometric considerations. Both Cr- and V-distribution can be very heterogeneous in individual crystals, as shown in the samples from Kruta Balka, Madagascar, and Zimbabwe. Nevertheless, taking average values available for emerald occurrences, the Cr/(Cr+V) ratio (Cr#) in combination with the Mg/(Mg+Fe) ratio (Mg#) and the amount of femag-substitution allows emerald occurrences to be characterized. The “ultramafic” schist-type emeralds with high Cr# and Mg# come from occurrences where the Fe-Mg-Cr-V component is controlled by the presence of ultramafic meta-igneous rocks. Emeralds with highly variable Mg# come from “sedimentary” localities, where the Fe-Mg-Cr-V component is controlled by metamorphosed sediments such as black shales and carbonates. A “transitional” group has both metasediments and ultramafic rocks as country rocks. Most “ultramafic” schist type occurrences are characterized by a high amount of femag-component, whereas those from the “sedimentary” and “transitional” groups have low femag contents. Growth conditions derived from the zoning pattern—combined replacement, sector, and oscillatory zoning—in the Kruta Balka emeralds indicate disequilibrium growth from a fluid along with late-stage Na-infiltration. Inclusions in Kruta Balka emeralds (zircon with up to 11 wt% Hf, tourmaline, albite, Sc-bearingapatite) point to a pegmatitic origin.

Keywords: Beryl, substitution mechanisms, ion microprobe analysis, electron microprobe analysis, optical spectroscopy, infrared spectroscopy, Kruta Balka, Ukraine; Lithium, Beryllium, and Boron: Quintessentially crustal

INTRODUCTION

Beryl, ideally Al2Be3Si6O18, is the most abundant Be-bearing mineral; solid solutions between beryl and other components have been the subject of several earlier investigations (e.g., reviews by Černý 2002; Hawthorne and Huminicki 2002). The crystal chemistry of emerald, its green gem varietal of beryl, has also been studied extensively (e.g., Groat et al. 2008; Marshall et al. 2012; Hewton et al. 2013; Loughrey et al. 2013; Aurisicchio et al. 2018). The structure of this cyclosilicate (space group P6/mcc; Gibbs et al. 1968) consists of Si6O18-rings lying in planes parallel to (0001), connected by Be-tetrahedra and Al-octahedra. Stackings of the rings creates channels with two additional positions: a large one (0,0,1/4; the 2a position) above the center of the rings and a smaller one (0,0,0; the 2b position) at the level of the rings.