Crystal chemistry and microfeatures of gadolinite imprinted by pegmatite formation and alteration evolution

NENAD TOMAŠIĆ1,*, RADEK ŠKODA2, VLADIMIR BERMANEC1, AND MARIN ŠOUFEK3

1Faculty of Science, Department of Geology, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
2Faculty of Science, Department of Geological Sciences, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
3Croatian Natural History Museum, Demetrova 1, HR-10000 Zagreb, Croatia

ABSTRACT

Gadolinite [REE2Fe2+Be2Si2O10] is a common mineral in certain types of rare element and rare earth element (REL-REE) pegmatites. Changes in pegmatite environment during and after gadolinite formation may be devised by studying its crystal-chemical properties and a thorough observation of microfeatures in the mineral matrix. Post-crystallization processes in pegmatite might trigger alteration mechanisms in gadolinite like in other REE-rich pegmatite minerals, whereby various late-magmatic or metasomatic events may affect mineral chemistry. Three gadolinite samples originating from various pegmatite occurrences in southern Norway offer an excellent opportunity in studying post-crystallization evolution of the pegmatites; by determining their crystallographic, chemical, and micro-textural features, imprints of the related processes in the pegmatites have been characterized in this study. Relevant mineral information was collected in recrystallization experiments of fully or slightly metamictized gadolinite samples and subsequent XRD analyses. Micro-Raman spectroscopy, electron microprobe analysis (EMPA), and scanning electron microscope–backscattered electron–energy-dispersive X-ray spectroscopy (SEM-BSE-EDS) analyses were employed to retrieve micro-chemical properties and related micro-textural features of the mineral matrix. With a reference to the gadolinite supergroup, a general alteration path can be envisaged outlining the pegmatite evolution and suggesting the occurrence of the secondary REE mineral phases: altered gadolinite domains prove Ca enrichment with a tendency toward the hingganite composition, while a slight fluorine increase and sporadic secondary fluorite occurrence imply a significant role of fluorine as a complexing agent in the dissolution-reprecipitation mechanism of metasomatic alteration in the mineral. Micro-Raman spectra show improved vibration statistics for the altered gadolinite domains, which could be linked to the substitution of rare earth elements (REE) by Ca and a possible increase of structural ordering within the gadolinite structure, being at the same time an indication of structural healing of metamictized domains by metasomatic processes. A study of microfeatures in the complex silicates like gadolinite proves to be an excellent tool to trace post-crystallization processes in a pegmatitic environment. With a slight redistribution of radionuclides during an alteration in gadolinite, a moderate precaution has to be taken when selecting gadolinite for U-Th-Pb dating.

Keywords: Gadolinite-(Y), crystal chemistry, metamictization, alteration domains, metasomatism, pegmatites

INTRODUCTION

Gadolinite is a rare earth element (REE) silicate with a formula REE2Fe2+Be2Si2O10. Three mineral species share the generic mineral name: gadolinite-(Y), gadolinite-(Ce), and gadolinite-(Nd). They are mutually distinguished by dominant REE cation occupying A position in the structure. A new nomenclature was recently approved by the International Mineralogical Association (IMA) (Hålenius et al. 2016; Bačík et al. 2017) establishing the gadolinite supergroup that is defined by a general formula A2MQ2T2O8, where A = Ca, REE, Pb, Mn2+, Bi (coordination number, CN, 8); M = Fe2+, Fe3+, Mg, Mn, Zn, Cu, Al (CN 6); Q = Be, B, Li (CN 4); T = Si, P, As, B, Be, S (CN 4); and φ = O, OH, F. The gadolinite supergroup is divided into the gadolinite and herderite group on a basis of T-site occupancy (Si vs. As/P, respectively). The gadolinite group is further subdivided into the gadolinite and datolite subgroup with Be and B occupying Q-site, respectively, or at the same time, divalent cations occupying A-site in the datolite subgroup and trivalent ones in the gadolinite subgroup. Gadolinite frequently occurs metamictized, but when crystallized, it is monoclinic with space group $P2_1/a$ (Miyawaki et al. 1984).

Occurrences of the gadolinite subgroup minerals are traditionally reported in granitic pegmatites of REL-REE subclass (Černý and Ercit 2005) or syenite pegmatites associated with larvikite magma (Segalstad and Larsen 1978). More recently, secondary gadolinite findings were described as a product of late-magmatic, post-magmatic, and alteration processes in granitoids and metamorphic environments (Uher et al. 2009; Majka et al. 2011), whereby gadolinite could have been evolved from primary REE minerals like allanite-(Ce), monazite-(Ce), or xenotime-(Y). Gadolinite has also been reported from Bastnäs-type Fe-REE deposits (Holtstam and Andersson 2007; Škoda et al. 2018).