Crystal chemistry and thermal behavior of Fe-carpholite from the Pollino Massif, southern Italy

ERNESTO MESTO¹, SALVATORE LAURITA², MARIA LACALAMITA¹, ROSA SINISI², GIOVANNA RIZZO², EMANUELA SCHINGARO^{1,*}, AND GIOVANNI MONGELLI²

¹Dipartimento di Scienze della Terra e Geoambientali, Università di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy ²Dipartimento di Scienze, Università degli Studi della Basilicata, viale Ateneo Lucano 10, 85100 Potenza, Italy

ABSTRACT

The crystal chemistry and thermal behavior of Fe-carpholite from the Pollino Massif have been investigated by a multi-method approach. A combination of optical microscopy, scanning electron microscopy, µRaman spectroscopy, thermal analysis, room-temperature single-crystal X-ray diffraction, and high-temperature X-ray powder diffraction was employed.

Field and micromorphological observations showed that the studied carpholite occurs in veins embedded in fine-grained matapelites and coexist with quartz, calcite, chlorite, and phengite. In particular, the tiny carpholite crystals are closely associated with quartz, suggesting simultaneous formation.

Structure refinements from single-crystal X-ray diffraction confirm that carpholite crystallizes in the *Ccce* space group. Anisotropic refinements converged at $2.3 \le R$ (%) ≤ 2.6 and yielded unit-cell parameters $a \sim 13.77$ Å, $b \sim 20.16$ Å, $c \sim 5.11$ Å, and $V \sim 1419$ ų. An X_{Fe} [i.e., the molar fraction Fe²+/(Mg+Fe²++Mn)] of ~ 0.6 was derived from the refined occupancy at the M1 site and is correlated to structural expansion mainly along the b and a axes and to geometrical distortions of the M1, M2, and M3 octahedra. μ Raman spectrum of unoriented Fe-carpholite crystals exhibits several bands in the 200-1200 cm⁻¹ region, a strong peak at 3630 cm⁻¹ and a weak peak at 3593 cm⁻¹, the latter two of which account for the presence of two independent OH groups, as also revealed by the X-ray structure refinement.

The TG curve indicates a total mass loss of 15.6% in the temperature range $30{\text -}1000\,^{\circ}\text{C}$, and the DTA curve shows a broad endothermic band at ~ $400\,^{\circ}\text{C}$, extending up to ~ $650\,^{\circ}\text{C}$, and weak exothermic peaks at ~ $700\,^{\circ}\text{C}$ and $750\,^{\circ}\text{C}$. The latter may be ascribed to the breakdown of the Fe-carpholite structure and crystallization of new phases. The in situ high-temperature X-ray powder diffraction from 30 to $1105\,^{\circ}\text{C}$ revealed no significant changes in XRD patterns from 30 to $355\,^{\circ}\text{C}$ but reflection splittings from $380\,^{\circ}\text{C}$ due to a Fe-oxidation/deprotonation process. The carpholite and deprotonated carpholite phases coexist in the temperature range $380{\text -}580\,^{\circ}\text{C}$, whereas only the deprotonated phase is observed up to $630\,^{\circ}\text{C}$. Above this temperature, the carpholite structure collapses and the characteristic peaks of spinel and quartz phases are observed. At $1105\,^{\circ}\text{C}$, spinel, mullite, garnet, cristobalite, and tridymite can be clearly identified. Our results provide insight into the thermal stability of Fe-carpholites and may help understand the thermal evolution of HP/LT metasediments.

Keywords: Fe-carpholite, crystal chemistry, thermal evolution, SEM, single-crystal XRD, high-temperature powder XRD, thermal analysis, µRaman spectroscopy