Vanadium-induced coloration in grossite (CaAl$_4$O$_7$) and hibonite (CaAl$_{12}$O$_{19}$)

MATTEO ARDIT1,*, **FERNANDO CÁMARA**2, and **ULF HÄLENIUS**3

1Department of Physics and Earth Sciences, University of Ferrara, via Saragat 1, I-44122 Ferrara, Italy
2Department of Earth Sciences, University of Milano, Via Botticelli 23, I-20133 Milano, Italy
3Department of Geosciences, Swedish Museum of Natural History, P.O. Box 50 007, SE-104 05 Stockholm, Sweden

ABSTRACT

High concentrations of vanadium cause very unusual coloration in hibonite (purple) and grossite (light violet) crystals in an exotic mineral assemblage from Sierra de Comechingones (Argentina). In the hibonite (CaAl$_{12}$O$_{19}$) structure vanadium ions, in various valence states (divalent, trivalent, and tetravalent), may be distributed over five crystallographic sites with coordinations corresponding to different polyhedra, namely, three unequal octahedra [M1 (D$_{5h}$), M4 (C$_4$), and M5 (C$_4$)], one M3 tetrahedron (C$_5$), and one unusual fivefold-coordinated trigonal bipyramid M2 (D$_{3d}$). Possible locations of vanadium ions in grossite (CaAl$_4$O$_7$) are limited to two crystallographically distinct sites (T1 and T2, both C$_5$) in tetrahedral coordination.

The combination of single-crystal X-ray diffraction and absorption spectroscopy techniques aided by chemical analyses has yielded details on the nature of the vanadium-induced color in both hibonite and grossite crystals. In hibonite, both M4 face-sharing octahedral and M2 trigonal bipyramid sites of the R-block are partially occupied by V$^{3+}$. Strongly polarized bands recorded at relatively low energies in optical absorption spectra indicate that V$^{2+}$ is located at the M4 octahedral site of the hibonite R-block. Chemical analyses coupled with an accurate determination of the electron densities at structural sites in hibonite suggest that the vanadium ions occupy about 10 and 5% of the M4 and M2 sites, respectively. For grossite, polarized optical absorption spectra reveal no indications of V$^{2+}$; all observed absorption bands can be assigned to V$^{3+}$ in tetrahedral coordination. Although not evident by the observed electron densities at the T sites of grossite (due to the low-V content), longer bond distances, and a higher degree of polyhedral distortion suggest that V$^{3+}$ is located at the T2 site.

Keywords: Calcium aluminates, hibonite, grossite, optical absorption spectroscopy, single-crystal X-ray diffraction, vanadium

INTRODUCTION

The importance of calcium-aluminum oxide compounds and mineralogical analogs evenly spans Materials Science and Earth Sciences. Hibonite (ideal formula CaAl$_{12}$O$_{19}$) and grossite (ideal formula CaAl$_4$O$_7$) are common constituents of calcium aluminate cements (CACs), which are a special type of cement commonly used in refractory concrete production. Along with aluminate cements (CACs), which are a special type of cement

* E-mail: rdmmtt@unife.it. Orcid 0000-0001-8998-3063