Two-stage magmatism and tungsten mineralization in the Nanling Range, South China: Evidence from the Jurassic Helukou deposit

JINGYA CAO1, HUAN LI2*, THOMAS J. ALGEO3,4,5, LIZHI YANG2, and LANDRY SOH TAMEHE2

1Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
2Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Central South University, Changsha 410083, China
3Faculty of Earth Resources, State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
4State Key Laboratory of Biogeology and Environment Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
5Department of Geology, University of Cincinnati, Cincinnati, Ohio 42221-0013, U.S.A.

ABSTRACT

The Helukou deposit, with proven reserves of 33,752 t WO3, is one of the newly exploited medium-scale tungsten (W) deposits in the Guposhan ore field, Nanling Range of South China. Skarn-type and less abundant altered granite-type tungsten orebodies were identified in this deposit. The ore mineralization in this district was a product of two-stage magmatism, as shown by LA-ICP-MS U-Pb dating of zircons and Re-Os dating of molybdenite. The former yielded U-Pb ages of 184.0 ± 3.6 Ma (MSWD = 0.15) and 163.8 ± 1.5 Ma (MSWD = 0.41) for fine-grained biotite granite and muscovite granite, respectively, as well as a U-Pb age of 181.5 ± 2.1 Ma (MSWD = 0.75) for zircon grains from altered granite-type tungsten ore. The latter yielded molybdenite Re-Os ages of 183.5 ± 2.8 Ma (without out MSWD owing to a limited number of samples) and 163.4 ± 2.8 Ma (MSWD = 0.71) for altered granite-type and skarn-type tungsten deposits, respectively. Thus, two separate tungsten mineralization events occurred during the Early Jurassic and Middle Jurassic. Trace-element compositions suggest that scheelite I was controlled by the coupled substitution reactions of 2Ca2+ = Na+ + REE3+ and Ca2+ + W⁶⁺ = Nb5+ + REE³⁺, whereas scheelite II was controlled by the coupled reactions of 2Ca2⁺ = Na⁺ + REE³⁺ and 3Ca⁺ = Ca + 2REE³⁺ (where O is a site vacancy). High Mo and low Ce contents suggest that both scheelite I and scheelite II were precipitated from oxidizing magmatic-hydrothermal fluids. Based on the mineral assemblage of the altered granite-type ores and geochemical characteristics of scheelite I [i.e., negative Eu anomalies (0.02–0.05; mean = 0.03 and STD = 0.01), and high ⁸⁷Sr/⁸⁶Sr ratios (0.70939–0.71932; mean = 0.71345 and STD = 0.00245)], we infer that fluid-rock interaction played an important role in modifying Early Jurassic ore-forming fluids. Scheelite II exhibits a geochemical composition [i.e., ⁸⁷Sr/⁸⁶Sr ratios (0.70277–0.71471; mean = 0.70940 and STD = 0.00190), Eu anomalies (0.14–0.55; mean = 0.26 and STD = 0.09), and Y/Ho ratios (16.1–33.7; mean = 27.9 and STD = 2.91)] similar to that of the Middle Jurassic Guposhan granites, suggesting inheritance of these features from granite-related magmatic-hydrothermal fluids. These results provide new insights into the two-stage magmatic and metallogenic history of the Nanling Range during the Jurassic Period.

Keywords: scheelite, Re-Os dating, U-Pb dating, W-Sn mineralization, Guposhan

INTRODUCTION

The South China, well-known for its huge resources of tungsten-tin (W-Sn) and other rare metals, is one of the most significant metallogenic domains in the world (Fig. 1; Mao et al. 2007, 2008, 2013; Chen et al. 2013; Hu et al. 2013; Hu et al. 2017; Cao et al. 2018a, 2018b; Zhou et al. 2018). However, none of these intrusions was associ-