Quantitative WDS compositional mapping using the electron microprobe

JOHN J. DONOVAN1,*, JULIEN M. ALLAZ2,†, ANETTE VON DER HandT3, GARETH G.E. SEWARD4,
OWEN NEILL5, KARSTEN GOEMANN6, JULIE CHOUINARD1, and PAUL K. CARPENTER7

1CAMCOR, University of Oregon, Eugene, Oregon, 97403, U.S.A.
2Institute of Geochemistry and Petrology, ETH Zürich, 8092 Zürich, Switzerland
3Department of Earth Sciences, University of Minnesota, Minneapolis, Minnesota 55455, U.S.A.
4Department of Earth Science, University of California Santa Barbara, Santa Barbara, California 93101, U.S.A.
5Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48013, U.S.A.
6Central Science Laboratory, University of Tasmania, Hobart, Tasmania 7001, Australia
7Department of Earth and Planetary Sciences, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, U.S.A.

ABSTRACT

While much progress has been made in electron-probe microanalysis (EPMA) to improve the accuracy of point analysis, the same level of attention has not always been applied to the quantification of wavelength-dispersive spectrometry (WDS) X-ray intensity maps at the individual pixel level. We demonstrate that the same level of rigor applied in traditional point analysis can also be applied to the quantification of pixels in X-ray intensity maps, along with additional acquisition and quantitative processing procedures to further improve accuracy, precision, and mapping throughput. Accordingly, X-ray map quantification should include pixel-level corrections for WDS detector deadtime, corrections for changes in beam current (beam drift), changes in standard intensities (standard drift), high-accuracy removal of background intensities, quantitative matrix corrections, quantitative correction of spectral interferences, and, if required, time-dependent corrections (for beam and/or contamination sensitive materials). The purpose of quantification at the pixel level is to eliminate misinterpretation of intensity artifacts, inherent in raw X-ray intensity signals, that distort the apparent abundance of an element. Major and minor element X-ray signals can contain significant artifacts due to absorption and fluorescence effects. Trace element X-ray signals can contain significant artifacts where phases with different average atomic numbers produce different X-ray continuum (bremsstrahlung) intensities, or where a spectral interference, even an apparently minor one, can produce a false-positive intensity signal. The methods we propose for rigorous pixel quantification require calibration of X-ray intensities on the instrument using standard reference materials, as we already do for point analysis that is then used to quantify multiple X-ray maps, and thus the relative time overhead associated with such pixel-by-pixel quantification is small. Moreover, the absolute time overhead associated with this method is usually less than that required for quantification using manual calibration curve methods while resulting in significantly better accuracy. Applications to geological, synthetic, or engineering materials are numerous as quantitative maps not only show compositional 2D variation of fine-grained or finely zoned structures but also provide very accurate quantitative analysis, with precision approaching that of a single point analysis, when multiple-pixel averaging in compositionally homogeneous domains is utilized.

Keywords: EPMA, WDS, quantitative analysis, X-ray mapping, quantitative mapping

INTRODUCTION

Quantification of WDS X-ray intensities by electron-probe micro-analysis (EPMA) has progressed over the last few decades with the development of better instrument hardware for stable operation and improved software for physics-based background, matrix, and spectral interference corrections (Armstrong 1988; Donovan et al. 1993; Donovan and Tingle 1996). However, these advances have generally been limited to so-called “point analysis,” by which we mean quantitative characterization of elemental chemistry, typically at a nominal volume of a cubic micrometer, when the beam and stage are stationary with respect to each other. This quantitative point analysis now approaches and may be better than 2% relative accuracy for major and even minor elemental concentrations in many compositional matrices. Additionally, these improvements in both hardware and software, combined with measurements at high-beam currents and extended integration times, have demonstrated sensitivity at ppm levels for quantitative point analysis in selected materials (e.g., Donovan et al. 2011; Batanova et al. 2015).

In practice, quantitative EPMA point analysis can be performed in minutes for a suite of elements and includes both background and matrix corrections. Conversely, X-ray maps obtain spatial information by limiting the dwell-time per pixel to hundreds to thousands of milliseconds, which, depending on