Oxygen isotope evidence for input of magmatic fluids and precipitation of Au-Ag-tellurides in an otherwise ordinary adularia-sericite epithermal system in NE China

SHEN GAO1,2,*,†, ALBERT H. HOFSTRA3, XINYU ZOU1,2, JOHN W. VALLEY4,§, KOUKI KITAJIMA4, ERIN E. MARSH3, HEATHER A. LOWERS3, DAVID T. ADAMS3,‡, KEZHANG QIN1,2,5,*, and HONG XU6

1Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
2Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
3U.S. Geological Survey, P.O. Box 25046, Denver, Colorado 80225, U.S.A.
4WiscSIMS, Department of Geoscience, University of Wisconsin-Madison, 1215 West Dayton Street, Madison, Wisconsin 53706, U.S.A.
5University of Chinese Academy of Sciences, Beijing 100049, China
6School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China

ABSTRACT

Tellurium-rich (Te) adularia-sericite epithermal Au-Ag deposits are an important current and future source of precious and critical metals. However, the source and evolution of ore-forming fluids in these deposits are masked by traditional bulk analysis of quartz oxygen isotope ratios that homogenize fine-scale textures and growth zones. To advance understanding of the source of Te and precious metals, herein, we use petrographic and cathodoluminescence (CL) images of such textures and growth zones to guide high spatial resolution secondary ion mass spectroscopy (SIMS) oxygen isotope analyses (10 µm spot) and spatially correlated fluid inclusion microthermometric measurements on successive quartz bands in contemporary Te-rich and Te-poor adularia-sericite (-quartz) epithermal Au-Ag vein deposits in northeastern China. The results show that large positive oxygen isotope shifts from –7.1 to +7.7‰ in quartz rims are followed by precipitation of Au-Ag telluride minerals in the Te-rich deposit, whereas small oxygen isotope shifts of only 4‰ (–2.2 to +1.6‰) were detected in quartz associated with Au-Ag minerals in the Te-poor deposits. Moreover, fluid-inclusion homogenization temperatures are higher in comb quartz rims (avg. 266.4 to 277.5 °C) followed by Au-Ag telluride minerals than in previous stages (~250 °C) in the Te-rich deposit. The Te-poor deposit has a consistent temperature (~245 °C) in quartz that pre- and postdates Au-Ag minerals. Together, the coupled increase in oxygen isotope ratios and homogenization temperatures followed by precipitation of Au-Ag tellurides strongly supports that inputs of magmatic fluid containing Au, Ag, and Te into barren meteoric water-dominated flow systems are critical to the formation of Te-rich adularia-sericite epithermal Au-Ag deposits. In contrast, Te-poor adularia-sericite epithermal Au-Ag deposits show little or no oxygen isotope or fluid-inclusion evidence for inputs of magmatic fluid.

Keywords: Quartz, SIMS, oxygen isotopes, fluid inclusions, magmatic fluid, Te, epithermal Au-Ag deposits

INTRODUCTION

Tellurium-rich (Te) adularia-sericite epithermal Au-Ag deposits are important producers of gold throughout the world (Ahmad et al. 1987; Spry et al. 1996; Cooke and McPhail 2001; Cook and Ciobanu 2005; Ciobanu et al. 2006; Voudouris 2006; Cook et al. 2009; Saunders and Bruseke 2012; Goldfarb et al. 2016, 2017; Kelley and Spry 2016; Zhai et al. 2018; Keith et al. 2020). Some of these deposits are associated with alkaline volcanic-plutonic centers (e.g., Cripple Creek; Kelley et al. 1998) and others with calc-alkaline volcanic-plutonic centers (e.g., Sandoaowanzi; Gao et al. 2017). Furthermore, the magmatic belts that contain Te-rich Au-Ag deposits can also host Te-poor Au-Ag deposits (e.g., Dong’an; Zhang et al. 2010a and reference therein). The source of Te in continental magmatic belts has been attributed to the nature of the sub-continental lithospheric mantle (SCLM) (e.g., Holwell et al. 2019). These deposits are economically important and are a potential source of Te, which is a critical commodity for modern technology, if current metallurgical impediments are resolved (Spry et al. 2004; Ciobanu et al. 2006; Cook et al. 2009; Goldfarb et al. 2016, 2017; Kelley and Spry 2016; Jenkin et al. 2019).

In magmatic-hydrothermal systems, Te is generally interpreted to be derived from igneous intrusions (Jensen and Barton 2000; Saunders and Bruseke 2012; Kelley and Spry 2016; Holwell et al. 2019); thus, magmatic fluids have been proposed to be involved in the formation of Te-rich epithermal Au-Ag deposits (e.g., Ciobanu et al. 2006). Recently, high-precision in situ oxygen isotope analyses by ion microprobe are regarded to be the most effective way to detect short-lived oxygen isotope...