Evidence from HP/UHP metasediments for recycling of isotopically heterogeneous potassium into the mantle

Ze-Zhou Wang1,2, Fang-Zhen Teng1,*,†, Vincent Busigny3,4, and Sheng-Ao Liu2

1Isotope Laboratory, Department of Earth and Space Sciences, University of Washington, Seattle, Washington 98195, U.S.A.
2State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
3Institut de Physique du Globe de Paris, CNRS, Université de Paris, F-75005, Paris, France
4Institut Universitaire de France, Paris, 75005, France

Abstract

Potassium isotopes may provide a novel approach for fingerprinting recycled sediments in the mantle due to the significant differences in K abundance and isotopic ratio between subducing sediment and the mantle. However, the behavior of K isotopes in sediments during subduction zone metamorphism is still unknown. Here we investigate K isotopic composition of a set of well-characterized high-to-ultrahigh-pressure metasediments from the Schistes Lustrés nappe (western Alps), which represents marine sediments subducted down to ~90 km depth in a cold subduction zone, and their protoliths from the Lavagna nappe (Apennines, Italy). The metasediments display δ^{41}K values from -0.76% to -0.48%, which are on average lower than the mantle value (-0.43%) but similar to those of non-metamorphic equivalents (-0.79% to -0.49%). No systemic variation of δ^{41}K with metamorphic grade is observed, suggesting negligible K isotope fractionation in these sediments during prograde metamorphism. This is in accord with the limited loss of K during the entire metamorphic history as evidenced by the constancy of K/Rb and K/Cs ratios between metamorphic and non-metamorphic sediments and the absence of correlations of δ^{41}K with K/Rb and K/Cs. The heterogeneous δ^{41}K values of metasediments are most likely inherited from their protoliths, which experienced different degrees of chemical weathering depending on their provenances. Our results demonstrate that the variable and light K isotopic signatures in subducting sediments could be preserved to depths of at least 90 km along a cold geotherm gradient, indicating that the introduction of sediments into the mantle could produce K isotope heterogeneity in the source regions of mantle-derived lavas.

Keywords: Potassium isotopes, metasediment, metamorphism, subduction zone; Isotopes, Minerals, and Petrology: Honoring John Valley

Introduction

Global subducting sediment (GLOSS) has an average K\textsubscript{2}O content (2.21 wt%; Plank 2014) several orders of magnitude higher than that of the mantle (0.03 wt%; McDonough and Sun 1995). Accordingly, recycling of sediments into the mantle has been commonly invoked to explain the significant K enrichment observed in many mantle-derived lavas such as arc volcanic rocks and EM-type oceanic island basalts (OIBs) relative to mid-ocean ridge basalts (MORBs) (e.g., Plank and Langmuir 1993; Tatsumi and Eggins 1995; Elliott 2003; Jackson and Dasgupta 2008; Rapp et al. 2008). Recent developments in high-precision K isotope measurements revealed that, compared with the mantle with a mean value of -0.43% defined by global oceanic basalts (Tuller-Ross et al. 2019), subducting sediments display an overall -1.3% variation in δ^{41}K and commonly have δ^{41}K values (down to -1.31%) lower than the mantle (Hu et al. 2020). Low δ^{41}K values of sediments were mainly ascribed to preferential leaching of heavy K isotopes during chemical weathering (Li et al. 2019a, 2019b; Chen et al. 2020; Hu et al. 2020; Huang et al. 2020; Teng et al. 2020) or incorporation of light K isotopes into authigenic clays during diagenesis (Santiago Ramos et al. 2018; Hu et al. 2020). By contrast, altered oceanic crust (AOC), another major K sink in subducting slabs, has an average δ^{41}K similar to or higher than the mantle due to interaction with isotopically heavy seawater (Parendo et al. 2017; Hille et al. 2019; Hu et al. 2020; Santiago Ramos et al. 2020). Hence, K isotopes have great potential to discriminate recycled sediments in the mantle. In this regard, the lighter K isotopic compositions relative to the mantle observed in some mantle-derived lavas have been explained to reflect recycled sediments in their mantle sources (e.g., δ^{41}K down to -0.81% for potassic basalts from Northeast China and δ^{41}K down to -0.60% for arc volcanic rocks from Lesser Antilles; Sun et al. 2020; Hu et al. 2021). However, this conclusion relies on the assumption that K isotopes are not fractionated in sediments during slab subduction into deep mantle, which still requires to be verified.

To date, only one recent study investigated the K isotope behavior during dehydration of subducted oceanic crust. Based on data for eclogites from Tibet, Liu et al. (2020) proposed that dehydration of oceanic crust preferentially releases heavy...