Water in the crystal structure of CaSiO$_3$ perovskite

SANG-HEON SHIM1,*, ANDREW CHIZMESHYA2, AND KURT LEINENWEBER3

1School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, U.S.A.
2School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, U.S.A.
3Eyring Materials Center, Arizona State University, Tempe, Arizona 85287, U.S.A.

ABSTRACT

While the water storage capacities of the upper 700 km depths of the mantle have been constrained by high-pressure experiments and diamond inclusion studies, the storage capacity of the lower mantle remains controversial. A recent high-pressure experimental study on CaSiO$_3$ perovskite, which is the third most abundant mineral in the lower mantle, reported possible storage of H$_2$O up to a few weight percent. However, the substitution mechanism for H in this phase remains unknown. We have conducted a series of density functional theory calculations under static-lattice conditions and high pressures to elucidate hydration mechanisms at the atomic scale. All of the possible dodecahedral (Ca$^{2+}$ → 2H$^+$) and octahedral (Si$^{4+}$ → 4H$^+$) substitution configurations for a tetragonal perovskite lattice have very small energy differences, suggesting the coexistence of multiples of H configurations in CaSiO$_3$ perovskite at mantle pressures and temperatures. The dodecahedral substitutions decrease the bulk modulus, resulting in a smaller unit-cell volume of hydrous CaSiO$_3$ perovskite under pressure, consistent with the experimental observations. Although the octahedral substitutions also decrease the bulk modulus, they increase the unit-cell volume at 1 bar. The H atoms substituted in the dodecahedral sites develop much less hydrogen bonding with O atoms, leading to a large distortion in the neighboring SiO$_6$ octahedra. Such distortion may be responsible for the non-cubic peak splittings observed in experiments on hydrous CaSiO$_3$ perovskite. Our calculated infrared spectra suggest that the observed broad OH modes in CaSiO$_3$ perovskite can result from the existence of multiples of H configurations in the phase. Combined with the recent experimental results, our study suggests that CaSiO$_3$ can be an important mineral phase to consider for the H$_2$O storage in the lower mantle.

Keywords: CaSiO$_3$ perovskite, water, mantle, first-principles calculation

INTRODUCTION

Global cycles involving volatile elements, such as hydrogen, are important for a range of processes in Earth and planetary systems, including interior-atmosphere interaction, mantle mixing and convection, and surface tectonics (Bolfan-Casanova 2005; Hirschmann 2006; Ohtani et al. 2016). Laboratory studies have shown that some nominally anhydrous minerals (NAMs) in the mantle transition zone can contain a large amount of H$_2$O in the crystal structure (Kohlstedt et al. 1996; Smyth 1994; Bell and Rossman 1992), which has been recently supported by diamond inclusion studies (Pearson et al. 2014).

However, the H$_2$O storage capacities of the major nominally anhydrous mineral phases in the lower mantle have been controversial. Earlier studies proposed a possible large storage for bridgmanite (Murakami et al. 2002; Litasov et al. 2003). Later, it was suggested that the existence of small hydrous inclusions can bias the earlier results and that the H$_2$O storage capacity of bridgmanite is very low compared with the nominally anhydrous mineral phases in the mantle transition zone (Bolfan-Casanova 2005; Panero et al. 2015). However, a more recent study reported a large amount of H$_2$O stored in bridgmanite crystallized from melt (Fu et al. 2019). Therefore, the H$_2$O storage capacity of bridgmanite remains uncertain. It appears that ferropericlase can contain only a very small amount of H$_2$O (Bolfan-Casanova et al. 2003).

CaSiO$_3$ perovskite is the third most abundant phase in the pyrolytic lower mantle composition (Kesson et al. 1998; Lee et al. 2004). It is one of the main mineral phases in subducting oceanic crust materials (Hirose et al. 2005; Ricolleau et al. 2010; Grocholski et al. 2012). Inclusions in diamond crystals from the deep mantle support the existence of CaSiO$_3$ perovskite in the lower mantle (Smith et al. 2018; Nestola et al. 2018). The importance of the crystal structure and elastic properties of CaSiO$_3$ perovskite has also been highlighted for the topmost lower mantle and the core-mantle boundary region in some recent studies (Thomson et al. 2019; Gréaux et al. 2019). Astrophysical studies have shown that some stars may produce a larger amount of Ca (Hinkel and Unterborn 2018). Earth-like exoplanets around those stars may therefore contain a larger amount of CaSiO$_3$ perovskite in their lower mantle. Accordingly, it is important to measure possible storage of H$_2$O and its impact on the equation of state for understanding the geophysics and geochemistry of those planets. Although some studies have suggested possible H$_2$O storage in this mineral phase (Murakami et al. 2002; Németh et al. 2017; Chen et al. 2020), it has been difficult to characterize the amount