Ground-truthing the pyrite trace element proxy in modern euxinic settings

DANIEL D. GREGORY1,*,†, TIMOTHY W. LYONS2, ROSS R. LARGE3, AND ALEKSANDR S. STEPANOV4

1Department of Earth Sciences, Earth Sciences Centre, 22 Russell Street, Toronto, Ontario M5S 3B1, Canada
2Department of Earth Sciences, University of California, Riverside, California 92521, U.S.A.
3CODES Centre for Ore Deposit and Earth Sciences, Private Bag 126, University of Tasmania, Hobart, Tasmania 7001, Australia
4Collaborative Innovation Center for Exploration of Strategic Mineral Resources, Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China

ABSTRACT

Pyrite trace element (TE) chemistry is now widely employed in studies of past ocean chemistry. Thus far the main proof of concept has been correlation between large data sets of pyrite and bulk analyses emphasizing redox sensitive TE data from ancient samples spanning geologic time. In contrast, pyrite TE data from modern settings are very limited. The sparse available data are averages from samples from the Cariaco Basin without stratigraphic resolution and from estuarine sediments. To fill this gap, we present TE data (Co, Ni, Cu, Zn, Mo, Ag, Pb, Bi) from the two largest euxinic basins on Earth today, locations where the majority of the pyrite formed within the water column, the Black Sea and Cariaco Basin. These locations have different water column TE contents due to their relative degrees of restriction from the open ocean, thus providing an ideal test of the relationship between pyrite precipitated under euxinic conditions from basins with different degrees of basin restriction and dissolved TE concentration.

At each site we observed that down-core trends for pyrite increase before reaching relatively steady values for most TE. This observation suggests that instead of all the TE being sourced directly from the water column, some are incorporated from the sediments, presumably desorbing from detrital materials. However, since much of the adsorbed TE is adsorbed from the overlying water, the pyrite chemistry still seems to reflect the water chemistry at or near the surface. Indeed, for Mo, there is less variation in pyrite than in bulk sediment. Additionally, we found that pyrite formed during diagenesis due to sulfide diffusion into iron-rich muds revealed low-TE contents, except for siderophile elements likely to have been adsorbed onto Fe (hydr)oxides, highlighting the risk of potential false negatives from pyrite formed under these conditions. This relationship highlights the need for detailed understanding of the full context, including the use of complementary geochemical data such as sulfur isotope trends, in efforts to use pyrite TE to interpret conditions in the global ocean.

Keywords: LA-ICPMS, Cariaco, Black Sea, trace elements, pyrite, framboid; Understanding Paleo-Ocean Proxies: Insights from in situ Analyses

INTRODUCTION

Pyrite trace element (TE) contents are used in a variety of ways in the Earth sciences, ranging from understanding different mechanisms of ore deposit formation (Large et al. 2007; Revan et al. 2014; Genna and Gaboury 2015; Cook et al. 2016; Gadd et al. 2016, 2019; Mukherjee and Large 2017) to tracing deleterious construction materials to their source (Dornan et al. 2020). Pyrite was isolated for analysis by rock crushing, treatment with different chemicals, and hand picking of pyrite grains (Tribovillard et al. 2008; Berner et al. 2013; Pisarzowska et al. 2014). This approach has been effective, but it was time consuming. Furthermore, different textures of pyrite, which are often very small, were difficult to extract. For example, the small framboidal pyrite, like those observed in this study, was the most difficult if not impossible to isolate (Berner et al. 2013). More recently, the adoption of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS) analyses has allowed in situ analysis of fine pyrite grains and thus focus on specific pyrite types. This methodology has...