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Supplementary Figures 

 

Fig. S1 Photomicrograph mosaics of the studied sections: (A) Ozerki, (B) Chug Chug 011, and (C) 
Chantonnay, built from transmitted (A and B) or reflected (C) light photographs. Rectangular white 
frames indicate the areas where high-pressure polymorphs were found; these are enlarged in Figs. 2 and 
3 in the main text. 
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Fig. S2 Compositional data for jadeite and it`s relatives from the literature and this work. Si vs. 
Na (A) and vs. Altot (B) for the literature and data from this work. In (C) Ca# [molar Ca/(Ca+Na)] 
expressed as percent vs. vacancies on M2 site. The compositions of the published work, and of this study 
are restricted to the portion of the diagram below the curve labeled “vacancy limit,” which defines the 
locus of points for which the M1 site is fully occupied with 3+ cations and the tetrahedral site by 4+ 
cations, and at narrow Ca# range (~10-20). The compositions for plagioclases defined in terms of a 
clinopyroxene formula unit, plot along a vertical line at an M2 vacancy concentration of 0.25; this line 
extends from end-member anorthite (Ca# of 100), labeled An100, through a Ca# of 33.3 (An33.3)(vacancy 
limit curve) to the Ca# 0 of albite (Ab). The tissintites (Tiss-I and Tiss-II) are plotted on the locus of 
points for which the Ca# range is narrow ~60-70; both tissintites represent under-silicic and highly-
defective high pressure clinopyroxenes (Ma et al. 2015, 2017). Compositions for jadeite (Jd), kushiroite 
(Ku), the Ca-Eskola component (Ca-Es), and albite (Ab) are also shown. The gray field encloses data 
from equilibration and synthesis experiments (Wood and Henderson 1978; Gasparik 1984, 1985, 1986; 
Irifune et al. 1986; Ono and Yasuda 1986; Pertermann and Hirschmann 2002; Okamoto and Maruyama 
2004; Zhao et al. 2011; Ishii et al. 2012; Massonne and Fockenberg 2012; Knapp et al. 2013). 
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Fig. S3 Vibrational patterns of a few representative modes in the albitic jadeite pyroxene. Na, Al, Si, and 
O are represented with purple, grey, light brown, and red spheres, respectively. The high-intensity Raman 
modes are labeled with their frequency (in cm-1). The modes are computed at 0K, hence there is no 
calculated broadening due to anharmonicity or thermal effects. 
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