Contamination of heterogeneous lower crust in Hannuoba tholeiite: Evidence from in situ trace elements and strontium isotopes of plagioclase

YU-TONG SU1,2†, ZONG-FENG YANG1,2,3*, SHUANG-YAN GUO1, and PEI-PEI LI1,2,3

1School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
2State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, 100083, China
3Research Center of Genetic Mineralogy, China University of Geosciences, Beijing, 100083, China

Abstract

The Hannuoba basalt, located in the northern margin of the North China Craton, is a typical intracontinental basalt with ocean island basalt-like geochemical features and has been extensively studied. However, its origin and deep processes, such as magma mixing and crystallization conditions, are still unclear. To further understand the mechanisms leading to the compositional heterogeneity and magmatic processes of Hannuoba basalt at crustal and/or mantle depth, in situ major element, trace element, and 87Sr/86Sr compositional heterogeneity of four representative plagioclase crystals in three Hannuoba tholeiite samples, as well as whole-rock major and trace element data, are reported. According to the petrographic characteristics, the basalts are divided into fine-grained and coarse-grained groups. The anorthite content in plagioclase of samples varies in a small range (56–64%), but the content of trace elements in plagioclase from the coarse-grained samples is generally higher than that of the fine-grained samples. Clinopyroxene-melt equilibrium thermobarometer and plagioclase-clinopyroxene magnesium and rare earth element exchange thermometers show that the magma for the two types of basalt was stored and crystallized at a similar depth, and crystallized within a 20 °C (fine-grained basalt) and 50 °C (coarse-grained basalt) temperature window, which may be a reason for the grain size differences between the two types of basalts. We found that 87Sr/86Sr of all the studied plagioclase crystals varied from 0.70333 ± 0.00018 (2SE) to 0.70556 ± 0.00031 (2SE), a much large range than the whole rock of Hannuoba basalts reported previously and consistent with that of Cenozoic basalts in North China. Therefore, at least two kinds of melts with significant differences in isotope and minor heterogeneity in major and trace elements are injected into each magma plumbing system. The content of trace elements in the Hannuoba tholeiite is between the Hannuoba alkaline basalt and the lower crust, which may be explained by the mixing of the alkaline basalt and the lower crust, but the low 87Sr/86Sr (<0.704) characteristics of plagioclase cannot be derived from alkaline basalts, because trace element abundances in the plagioclase are not in equilibrium with the alkaline basalt. Therefore, we believe that the compositional heterogeneity of Hannuoba tholeiitic basalt is caused by the mixing of heterogeneous lower crust rather than different mantle-derived melts. In turn this indicates that the contribution of the continental lower crust to the continental basalts is more complicated than previously recognized.

Keywords: Basalt, plagioclase, strontium isotope, magmatic process, lower continental crust, Hannuoba

Introduction

A large number of studies show that the lower continental crust plays an important role in the geochemical diversity of continental basalts (Glazner et al. 1991; Jiang and Zhi 2010; Liu et al. 2008b; Lustrino 2005; Xu et al. 2017; Zeng et al. 2011). Many studies suggest that the compositional signals of the lower continental crust imply that it is a source of material for basalt through the recycling of crustal materials. (Liu et al. 2008b; Xu et al. 2017; Zeng et al. 2011). Others, however, have suggested that the contamination of the lower continental crust during the ascent of basaltic magma may be an important reason for the compositional diversity of continental basalts. However, this contamination is usually very difficult to identify (Glazner and Farmer 1992; Glazner et al. 1991; Jiang and Zhi 2010) because the lower continental crust is mainly composed of mafic rocks with heterogeneous compositions (Rudnick and Fountain 1995). Moreover, the heterogeneity becomes more significant through partial melting of the lower crust, crystallization differentiation, and mixing of various mantle-derived magmas.

Hannuoba basalt is a typical continental ocean island type basalt in that its rock types, petrography, and geochemistry have significant diversity. Although there is a long history of research, there is still controversy about how the lower continental crust affects the documented compositional diversity of Hannuoba basalts (Basu et al. 1991; Guo et al. 2016; Jiang and Zhi 2010; Liu et al. 1994; Qian et al. 2015; Song et al. 1990; Xu et al. 2017; Yang et al. 2016; Zhi et al. 1990). The whole rock data of major and trace elements, as well as Sr, Nd, and Pb isotopes, indicate that the ancient lithospheric mantle (Basu et al. 1991; Liu et al. 1994; Song et al. 1990) or recycled ancient oceanic crust and