The first occurrence of the carbide anion, C\(^4\), in an oxide mineral: Mikecoxite, ideally (CHg\(_3\))OCl\(_2\), from the McDermitt open-pit mine, Humboldt County, Nevada, U.S.A.

MARK A. COOPER\(^1\), GAIL DUNNING\(^8\), FRANK C. HAWTHORNE\(^1, *\), CHI MA\(^2, ☼\), ANTHONY R. KAMPF\(^3, ☯\), JOHN SPARR\(^4\), CHRISTOPHER J. STANLEY\(^4\), ANDREW G. CHRISTY\(^5, 6\)

\(^1\)Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
\(^2\)Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A.
\(^3\)Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A.
\(^4\)Department of Earth Sciences, Natural History Museum, London SW7 5BD, U.K.
\(^5\)Geosciences, Queensland Museum, 122 Gerler Road, Hendra, Queensland 4011, Australia
\(^6\)Christy Mineralogical Consulting, P.O. Box 517, Hamilton, Queensland 4007, Australia

Abstract

Mikecoxite, ideally (CHg\(_3\))OCl\(_2\), is the first mercury-oxide-chloride-carbide containing a C\(^4\) anion coordinated by four Hg atoms (a permmercurated methane derivative) to be described as a mineral species. It was found at the McDermitt open-pit mine on the eastern margin of the McDermitt Caldera, Humboldt County, Nevada, U.S.A. It is monoclinic, space group \(P2_1/n\), \(Z = 4\); \(a = 10.164(5)\,\text{Å}\), \(b = 10.490(4)\,\text{Å}\), \(c = 6.547(3)\,\text{Å}\), \(V = 698.0(5)\,\text{Å}^3\). Chemical analysis by electron microprobe gave Hg 86.38, Cl 11.58, Br 0.46, C 1.81, sum = 100.23 wt\%, and O was detected but the signal was too weak for quantitative chemical analysis. The empirical formula, calculated on the basis of Hg + Cl + Br = 6 apfu, is (C\(_1\,\text{Hg}_3\,\text{Cl}\,\text{Br}_{0.05}\,\text{O}_{2.57})\,\text{Cl}_{2.57}\,\text{Br}_{0.05}\,\text{O}_{2.57}\), and the ideal formula based on the chemical analysis and the crystal structure is (CHg\(_3\))OCl\(_2\). The seven strongest lines in the X-ray powder diffraction pattern are \([d(Å), I, (hkl)]\): 2.884, 100, (230); 2.989, 81, (301, 301, T12, 112, T31, 131); 2.673, 79, (T22, 122, 121, 212); 1.7443, 40, (060, 323, 432); 5.49, 34, (T01, 101); 4.65, 32, (120); 2.300, 30, (312, 312). The Raman spectrum shows three bands at 638, 675, and 704 cm\(^{-1}\), well above the range characteristic of NHg, stretching vibrations between 540 and 580 cm\(^{-1}\), that are assigned to CHg, stretching vibrations. Mikecoxite forms intergrowths of bladed crystals up to 100 μm long that occur on granular quartz or in vugs associated with kleinite. It is black with a submetallic to metallic luster and strong specular reflections and does not fluoresce under short- or long-wave ultraviolet light. Neither cleavage nor parting were observed, and the calculated density is 8.58 g/cm\(^3\). In the crystal structure of mikecoxite, (C\(^4\)Hg\(^3\))\(^\text{―}\) groups link through O\(^\text{―}\) ions to form three-membered rings that polymerize into corrugated [CHg\(_3\)OCl\(_2\)] layers with near-linear C\(\equiv\)Hg–O and C\(\equiv\)Hg–Cl linkages. The layers link in the third direction directly via weak Hg\(^2\)+–O\(^2\)– and Hg\(^2\)+–Cl– bonds to adjacent layers and also indirectly via interlayer Cl–. A bond-valence parameter has been derived for (Hg\(^2\)+–C\(^4\)) bonds: \(R_b = 2.073\,\text{Å}\), \(b = 0.37\), which gives bond-valence sums at the C\(^4\) ions in accord with the valence-sum rule. The source of carbon for mikecoxite in the volcanic high-desert environment of the type locality seems to be methane, with the reaction catalyzed by microbiota through full mercuration of carbon atoms, beyond the first stage that produces the volatile and highly mobile methylmercury, [CH\(_3\)Hg\(^+\)], a potent neurotoxin that accumulates in marine food chains. Both the mineral and the mineral name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA 2021-060). The mineral is named after Michael F. Cox (b. 1958), a founding member of the New Almaden Quicksilver County Park Association (NAQCPA) who was responsible for characterizing and remediating environmental mercury on-site, and who recovered the rock containing the new mineral.

Keywords: Mikecoxite, new mineral, mercury-oxide-chloride-carbide, crystal-structure refinement, Raman spectrum, electron-microprobe analysis, McDermitt open-pit mine, Humboldt County, Nevada, U.S.A.

Introduction

As part of our continuing interest in Hg-bearing minerals (Hawthorne et al. 1994; Cooper and Hawthorne 2003, 2009; Cooper et al. 2013, 2016, 2019; Roberts et al. 2001, 2002, 2003a, 2003b, 2004, 2005), here we report on a new mercury-oxide-chloride-carbide mineral from the McDermitt mine. The new mineral is named after Michael F. Cox (b. 1958) of Soquel, California, who recovered the rock containing the new mineral. Michael Cox has had a life-long interest in Hg minerals. Most notably, he was a founding member of the New Almaden Quicksilver County Park Association (NAQCPA), was responsible for characterizing and remediating environmental mercury on-site, and contributed substantially to the creation of a world-class mercury-mining interpretive center in New Almaden, California. He also contributed substantially to the late Gail Dunning’s search for interesting new mercury minerals (Dunning et al. 2019). One holotype specimen (rock piece, single-crystal mount,