Single-crystal X-ray diffraction of fluorapatite to 61 GPa

MELINDA J. RUCKS1,*, GREGORY J. FINKELSTEIN1, DONGZHOU ZHANG2,3,†, PRZEMYSŁAW K. DERA2,3, and THOMAS S. DUFFY1

1Department of Geosciences, Princeton University, Princeton, New Jersey 08544, U.S.A.
2Hawaii Institute of Geophysics & Planetology, School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, Hawaii 96822, U.S.A.
3GSECARS, University of Chicago, Building 434A, 9700 South Cass Avenue, Argonne, Illinois 60439, U.S.A.

ABSTRACT

Apatite is a mineral of widespread importance in Earth and planetary science. Here we examine the behavior of a natural fluorapatite (FAp) crystal from Durango (Mexico) under compression to 61 GPa. Single-crystal X-ray diffraction experiments were carried out in a diamond-anvil cell using a synchrotron source. The apatite structure persists up to 32.4 GPa. Birch-Murnaghan equation of state parameters were fit to the pressure-volume data for fluorapatite for two cases: fixing V_0 at its measured ambient value resulted in a bulk modulus, K_0, of 97.0(8) GPa and a pressure derivative of the bulk modulus, K_0'/V_0, of 3.3(1), while fixing V_0 and K_0 at its ambient value 90.5 GPa (derived from ultrasonically measured elastic constants) resulted in a K_0'/V_0 value of 4.1(1). At 35.6 GPa, fluorapatite transforms to a triclinic phase ($PT, Z=4$), designated here as fluorapatite II (FAp-II). This phase persists up to at least 61 GPa. The major structural differences between FAp and FAp-II involve the buckling of the Ca polyhedra along the c-axis and changes in the number and coordination of the Ca sites. Our study extends the pressure range over which fluorapatite has been examined by more than a factor of three, providing new insights into its structural response to high-pressure conditions.

Keywords: Apatite, high-pressure, diamond anvil cell, single-crystal X-ray diffraction

INTRODUCTION

Apatite, Ca$_5$(PO$_4$)$_3$(F,Cl,OH), occurs widely in rocky bodies in the solar system, playing an important role as a host for phosphorous and other volatiles. It is one of the most prevalent volatile-bearing phases observed in lunar samples (McCubbin et al. 2010, 2011; Boyce et al. 2014; McCubbin and Jones 2015) and is also found in meteorites (Chen et al. 1995; Sarafian et al. 2013). The apatite structure is highly adaptable and has the ability to incorporate several cations and anions, including Sr$^{2+}$, Mn$^{3+}$, Pb$^{2+}$, Br$^-$, CO$_3^{2-}$, and rare earth elements (Hughes and Rakovan 2015). Recently, there has been growing interest in the use of apatite as a diagnostic of shock metamorphism in meteorites and at impact sites (Cox et al. 2020; Kenny et al. 2020). This highlights the need for detailed characterization of the behavior of apatite minerals under static and dynamic compression.

Fluorapatite (FAp), Ca$_5$(PO$_4$)$_3$F, crystallizes in the hexagonal system (space group $P6_3/m$, $Z=2$) at ambient conditions (Fig. 1). The structure contains two types of Ca polyhedra, designated Ca1 and Ca2. The Ca1 polyhedron is a tricapped trigonal prism with ninefold coordination. The Ca1 polyhedra share (001) faces and form chains parallel to the c-axis. The cations in Ca2 are enclosed in an irregular seven-coordinated polyhedron with six oxygen bonds and one fluorine bond. PO$_4$ tetrahedra link adjacent Ca1 and Ca2 polyhedra (White and Zhi Li 2003; White et al. 2005). The F anions are located in channels running along the c-axis.

The cations in the Ca2 polyhedra define a triangle with an F anion at its center with fractional coordinates (0, 0, 1/4). Detailed descriptions of the FAp structure can be found elsewhere (White et al. 2005; Hughes and Rakovan 2015).

Experimental methods

A natural, gem-quality crystal of fluorapatite from Cerro de Mercado, Durango, Mexico (Excalibur Minerals) was used in this study. Single-crystal X-ray diffraction experiments were carried out using synchrotron-based single-crystal X-ray diffraction techniques.