New Mineral Names

AARON J. CELESTIAN

1Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A.

ABSTRACT

This issue of New Mineral Names provides a summary of the newly described minerals dononwensite, mikhowardite, bortolanite, fluorsigaiite, alumolukrahnite, ferro-ferri-katophorite, tomsquarryite, and argentotetrahedrite-(Zn).

DONOWENSITE AND MIKHOWARDITE

Dononwensite and mikhowardite (Kampf et al. 2022), ideally Ca(H2O)2Fe3+(V2O5)2, and Fe2+[VO4]3−(H2O)2H2O, respectively, are intimately associate secondary minerals from the Wilson Springs vanadium mine in Wilson Springs, Arkansas, U.S.A. Dononwensite is named in honor of Don Owens (1937–2015) who was a geologist doing vanadium exploration with Union Carbide. Mikhowardite is named in honor of James Michael “Mike” Howard (b. 1949) who has worked for the Arkansas Geological Commission.

Dononwensite crystallizes in space group P21 with a = 7.345(4) Å, b = 9.9291(4) Å, c = 10.0151(7) Å, α = 94.455(7)°, β = 98.476(7)°, γ = 100.779(7)°, V = 705.52(7) Å3, and has a measured density of 2.97(2) g/cm3. The mineral and its name have been approved by the Commission of New Mineral Nomenclature and Classification (CNMNC) of the International Mineralogical Association (IMA) (IMA 2020-067). Two co-type specimens are deposited in the collections of the Natural History Museum of Los Angeles County, Los Angeles, California, U.S.A., with catalog numbers 75041.

Mikhowardite crystallizes in space group P21 with a = 6.6546(17) Å, b = 6.6689(14) Å, c = 9.003(2) Å, α = 76.515(5)°, β = 84.400(6)°, γ = 75.058(5)°, V = 375.11(15) Å3, and has a measured density of 3.19(2) g/cm3. The mineral and its name have been approved by the CNMNC of the IMA (IMA 2020-068). Two co-type specimens are deposited in the collections of the Natural History Museum of Los Angeles County, Los Angeles, California, U.S.A., with catalog number 75042.

BORTOLANITE

Bortolanite (Day et al. 2022), ideally Ca3(Fe3+,Zr4+)2Na(NaCa)3Ti(Si3O9)(POOH)2, is named after its locality at the Bortolan quarry, Minas Gerais, Brazil. Bortolanite belong to the rinkite-group of minerals and is isostructural with fogoite-(Y), kainite-(Y), and gützeitite.

Bortolanite crystallizes in space group P21 with a = 9.615(3) Å, b = 5.725(2) Å, c = 7.316(2) Å, α = 89.91(1)°, β = 101.14(1)°, γ = 100.91(1)°, V = 87.73(3) Å3, and has a calculated density of 3.195 g/cm3. The mineral and its name have been approved by the CNMNC of the IMA (IMA 2021-040a). The holotype sample has been deposited in the collections of the Canadian Museum of Nature, Ottawa, Canada, with catalog number CMNMC 88727.

FLUORSIGAIITE

Fluorsigaiite (Wu et al. 2022), ideally SrCa3(PO4)3F, was found at the Saima alkaline complex (a nepheline-syenite complex) approximately 50 km northeast of Fengcheng City, China, and is a member of the apatite supergroup. Fluorsigaiite is named after the Chinese pronunciation, “si” for strontium, “gai” for calcium, and the prefix “fluor” (from Latin) as being F-dominant in accordance to apatite nomenclature.

Fluorsigaiite crystallizes in space group P63/m with a = 9.6101(2) Å, c = 7.3131(1) Å, V = 570.35(3) Å3, and has a calculated density of 3.842 g/cm3. The mineral and its name have been approved by the CNMNC of the IMA (IMA 2021-87a). The type mineral is deposited at the Geological Museum of China, Beijing, China, with catalog number M16130.

ALUMOLUKRAHNITE

Alumolukrahnite (Kampf et al. 2023), ideally CaCu2+Al(AsO4)3(OH), is the Al analog of lukrahnite. Small diamond-shaped crystals (~0.1 mm on edge) of alumolukrahnite was found in a hydrothermal vein in the Jose mine of the Atacama Region in Chile.

Alumolukrahnite crystallizes in space group P21 with a = 5.343(5) Å, b = 5.501(5) Å, c = 7.329(5) Å, α = 67.72(2)°, β = 69.06(2)°, γ = 69.42(2)°, V = 180.3(3) Å3, and has a calculated density of 4.094 g/cm3. The mineral and its name have been approved by the CNMNC of the IMA (IMA 2022-059). Three co-type is deposited in the collections of the Natural History Museum of Los Angeles County, Los Angeles, California, U.S.A., with catalog numbers 76256, 76257, and 76258.

FERRO-FERRI-KATOPHORITE

Ferro-ferri-katophorite (Colombo et al. 2023), ideally Na(NaCa)3Fe2+Fe4+(Si3AlO9)(OH), was found as a granular mass in reaction rims around aegirine-augite crystals. The name is in accordance with the amphibole minerals in katophorite group, with the mixed Fe2+ and Fe3+ confirmed by Mössbauer spectroscopy.

Ferro-ferri-katophorite crystallizes in space group C2/m with a = 9.8270(7) Å, b = 18.0300(8) Å, c = 5.316(4) Å, β = 106.626(4)°, γ = 911.4(6)°, V = 312.3(1) Å3, and has a measured density of 3.32(1) g/cm3. The mineral and its name have been approved by the CNMNC of the IMA (IMA 2016-008). The type material (fragment of the holotype) has been deposited in the collection of the Museo de Mineralogia, Universidad Nacional de Córdoba (Argentina), with catalog number MS003341.

TOMSQUARRYITE

Tomsquarryite (Elliott et al. 2022), ideally NaMgAl(PO4)3(OH),8H2O, was found in Tom’s quarry located in Kapunda, South Australia. A second specimen was also found at the Penrice marble quarry located 15 km southeast of Tom’s quarry. At both locations, tomsquarryte was found in association with angastonite, penriceite, elliottite, and wavellite.

Tomsquarryte crystallizes in space group R3m, with unit-cell parameters a = 6.9865(5) Å, c = 30.658(3) Å, V = 1294.9(4) Å3, and a calculated density of 2.22 g/cm3. The mineral and its name have been approved by the CNMNC of the IMA (IMA 2022-018). The holotype has been deposited in the collection of the Museo de Mineralogia, Universidad Nacional de Córdoba (Argentina), with catalog number MS003341.
and cotype specimens from Tom’s quarry and the cotype from the Penrice marble quarry are housed in the mineralogical collections of the South Australian Museum, with catalog numbers G35033, G35034, and G35031, respectively.

Argentotetrahedrite

Argentotetrahedrite-(Zn) (Sejkora et al. 2022), ideally $\text{Ag}_6(\text{Cu}_{4}\text{Zn}_2)\text{Sb}_4\text{S}_{13}$, which is a Zn-rich, Ag-dominate member of tetrahedrite group of minerals. Argentotetrahedrite-(Zn) was found in three different localities, Krmnica in the Slovak Republic, Lengenbach (Switzerland), and Zvěstov (Czech Republic).

Argentotetrahedrite-(Zn) crystallizes in space group $\overline{4}3m$ with $a = 10.5505(10)$ Å, $V = 1174.4(3)$ Å3, and has a calculated density of 5.089 g/cm3. The mineral and its name have been approved by the CNMNC of the IMA (IMA 2020-069). The holotype material from Kremnica and type material from Zvěstov are deposited in the collections of the Department of Mineralogy and Petrology, National Museum in Prague, Czech Republic, with catalog numbers P1P 51/2020 and 70/2021, respectively. The crystals used for the single-crystal X-ray diffraction study, along with cotype material from Lengenbach, are kept in the mineralogical collection of the Museo di Storia Naturale of the Università di Pisa, with catalog numbers 19922 (Kremnica), 19923 (Lengenbach), and 19939 (Zvěstov).

References cited

Day, M.C., Sokolova, E., Havlíkove, F.C., Horváth, L., and Pfenninger-Horváth, E. (2022) Bortolanite, $\text{Ca}_{3}(\text{Ca}_{1.5}\text{Zr}_{0.5})\text{Na}(\text{NaCa})\text{Fe}\text{Si}_{3}\text{O}_{12}\text{OF}_2$, a new rinkite-group (seidozerite supergroup) TS-block mineral from the Bortolan Quarry, Pocos de Caldas Massif, Minas Gerais, Brazil. Canadian Mineralogist, 60(4), 699–712.

Elliott, P., Grey, I., Mumme, W.G., MacRae, C.M., and Kampf, A.R. (2022) Tom-squarrit, $\text{NaMgAl}_3(\text{PO}_4)_2(\text{OH})_2\cdot\text{H}_2\text{O}$, a new crandallite-derivative mineral from Tom’s phosphate quarry, Kapunda, South Australia. European Journal of Mineralogy, 34(4), 375–383.

Kampf, A.R., Mills, S.J., Nash, B.P., and Smith, J.B. (2022) Donowensite, $\text{Ca}(\text{H}_2\text{O})_2\text{Fe}^{3+}(\text{V}_2\text{O}_7)$, and Mikehowardite, $\text{Fe}^{3+}(\text{VO}_4)_2(\text{H}_2\text{O})_2\cdot\text{H}_2\text{O}$, two new vanadium minerals from the Wilson Springs Vanadium Mine, Wilson Springs, Arkansas, USA. Canadian Mineralogist, 60(3), 543–554.

Kampf, A.R., Mills, S.J., Nash, B.P., Dini, M., and Donoso, A.A.M. (2023) Alumolakrahnite, $\text{CaCu}^{2+}\text{Al}(\text{AsO}_4)_2(\text{OH})\cdot\text{H}_2\text{O}$, the aluminium analogue of lakrahnite from the Jote mine, Copiapo Province, Chile. Mineralogical Magazine, 1–16.

Sejkora, J., Biagioni, C., Števko, M., Raber, T., Roth, P., and Vrtiška, L. (2022) Argentotetrahedrite-(Zn), $\text{Ag}_6(\text{Cu}_{4}\text{Zn}_2)\text{Sb}_4\text{S}_{13}$, a new member of the tetrahedrite group. Mineralogical Magazine, 86(2), 319–330.