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Raman spectroscopy 

Methods 

Depolarized Raman spectroscopic measurements of thin sections with selected MGM and 

XGM were performed on a Labram HR800 spectrometer (Horiba Jobin-Yvon), coupled with 

an Olympus BX41 optical microscope. Samples were irradiated using a 532 nm frequency-

doubled Nd-YAG (torus 532, Laser Quantum, UK) and 633 nm He-Ne lasers through neutral-

density filters in order to prevent damage and thermal shifts. A long-working-distance 

objective LMPLanFI 100×/0.8 focused the laser beam and collected Raman-scattered light in 

180° geometry, which was further dispersed in a confocally coupled Czerny-Turner type 

monochromator by diffraction grating with 1800 grooves per mm onto a cooled charge-

coupled device (CCD) detector. The system resolution was 2 cm−1; band definition was 

improved using 6-fold sub-pixel shift. The grating turret accuracy was calibrated between the 

zero-order line and the laser line at 0 cm−1. Spectral accuracy was verified on the 734 cm−1 

band of Teflon. Peaks were deconvoluted with Gauss-Lorentzian function in PeakFit© 

program (SeaSolve Software, Inc.).   

Monazite-group minerals 

All the Raman bands of the studied Ce, Nd, Sm, and Gd members of MGM from the 

Zimná Voda mineralization occurred in the range up to 1200 cm-1 (Supplementary Fig. 2a). 
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Spectra are characteristic by an increased background around these frequencies. Two groups 

of lines were observed: from 100 to 700 cm-1, with dominant peaks at 399 cm-1 and 470 cm-1 

(Mnz-Ce), at 423 cm-1 and 473 cm-1 (Mnz-Sm) and at 423 cm-1 and 472 cm-1 (Mnz-Gd) in the 

low-frequency region and 950–1100 cm-1 in the high-frequency region (Supplementary Fig. 

2b). The most intensive peaks are centered at 975, 981 and 981 cm-1 and have an asymmetric 

shape. 

Xenotime-group minerals 

Raman spectra of xenotime-(Y) and “xenotime-(Gd)” are strongly affected by the 

photoluminescence (PL) of REE3+, which masks Raman signal in the low-frequency range 

(100–750 cm-1) (Appendix Fig. 3). Raman modes are clearly visible between 800 and 1200 

cm-1 in both 532 nm and 633 nm excited spectra. Xenotime-(Y) produces distinct bands 

centered at 999, 1024, and 1057 cm-1, spectra of “xenotime-(Gd)” show lines at 996, 1018, 

1052 cm-1, with an additional, less intensive band at 965 cm-1 and minor broad features at ca 

870, 900, and 1150 cm-1. Distinctive PL is observed in regions 1550–3000 and 3200–4500 

cm-1 after 532 nm laser excitation. 

Raman implications 

Monazite crystallizing in the monoclinic structure symmetry (space group P21/n, Z = 4) and a 

representative spectrum give the total of 36 (18Ag + 18Bg) Raman active modes (Begun et al. 

1981; Ruschel et al. 2012; Heuser et al. 2014). The region below 700 cm-1 generally reflects 

lattice vibrations: translations and rotations, the A-PO4 movements and symmetric bending 

(ν2), as well as asymmetric bending (ν4) vibrations of the PO4 tetrahedra. The symmetric (ν1) 

and antisymmetric stretching (ν3) vibrations region of the PO4-tetrahedra is expressed in the 

900–1100 cm-1 region (Appendix Fig. 2), where ν1 are the most intensive. In monazites, 

Raman shift of (PO4)3- internal vibration modes and A-PO4 are linearly-correlated with cation 

ionic radii at the A-site site (Begun et al. 1981; Podor 1995; Heuser et al. 2014; Meng et al. 
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2016; Li et al. 2018). Although the cation site in the structure of natural monazite is occupied 

by a variety of REE and actinoids (see Table 5), Raman shifts of fundamental vibration bands 

correspond with published spectral data for monoclinic synthetic and natural samples (Begun 

et al. 1981; Silva et al. 2006; Ruschel et al. 2012; Heuser et al. 2014; Lenz et al. 2015; 

Heffernan et al. 2016; Huittinen et al. 2017; Clavier et al. 2018; Vats et al. 2019; Maftei et al. 

2020). The ν1 and ν3 frequencies increase from Ce3+-dominant monazite composition 

(dominant bands centered at 975 and 1060 cm-1) to the Sm3+ and Gd3+-dominant compositions 

(centered at 981 and 1065 cm-1 for both), which is related to increasing atomic number and 

decreasing ionic radius of A3+ in monazite (Begun et al. 1981; Podor 1995; Heuser et al. 2014; 

Li et al. 2018). The Sm and Gd compositions show the near identical ν1 and ν3 frequencies, 

perhaps due to very close masses of these ions. Moreover, the Gd-dominant phase still has 

increased Sm content and vice versa. For Nd-dominant composition with an intermediate 

atomic number, the position of these bands is at 975 and 1062 cm-1. A similar observation can 

be made for the ν4 vibrations position visible from 622 to 626 cm-1, as well as for ν2 

vibrations, but with small deviations. The discovered broadening of ν1 and ν3 modes and 

revealed sub-bands may arise from the element distribution in the cation sites of MGM 

(MREE, LREE and negligible Ho–Lu + Y (HREE) abundance) and with elevated As and Si in 

the P structural site.  

The visible xenotime-(Y) and “xenotime-(Gd)” Raman bands frequencies correspond 

to previously published data for xenotime type orthophosphates (Begun et al. 1981; Lenz et 

al. 2015; Yahiaoui et al. 2017; Lösch et al. 2019; Clavier et al. 2018). Lattice vibration modes 

usually occur below 300 cm-1 (Begun et al. 1981; Lösch et al. 2019) or up to 400 cm-1 

(Clavier et al. 2018) including the entire (PO4)3- unit translations and rotation modes. Similar 

to monazite, the symmetric and antisymmetric stretching bands (ν1 and ν3) are shown in the 

spectral range of 950–1100 cm-1. The frequencies of “xenotime-(Gd)” are lower than those of 
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xenotime-(Y). Our data correspond to the shifting of ν1 and ν3 positions observed in 

experimental studies on REE substitutions in the xenotime-type orthophosphates (Begun et al. 

1981; Clavier et al. 2018). Though all the (PO4)3- stretching frequencies increase with the 

increasing atomic number of lanthanides, their wavenumbers for Tb and Gd members are 

similar to our values for the Y and Gd members. A similar trend is visible in the region of the 

(PO4)3- bending frequencies. Despite strong PL, we can recognize the following Raman bands 

in xenotime-(Y): 650, 580, 484 cm-1; and “xenotime-(Gd)”: 640, 577, 483 cm-1. The peaks at 

965 cm-1, 900 and 1150 cm-1 may be tentatively attributed to substitution of Si and As in an 

anion position in natural xenotime; however, more detailed inspection is necessary. PL 

reveals the presence of Er3+ and Ho3+ (633 nm excitation), Er3+, Eu3+, Ho3+, and Sm3+ (532 

nm excitation, Supplementary Fig. 3). Here, Sm3+, probably causes broadening of the band 

1017 cm-1, and the broad, weak band near 1150 cm-1 can possibly be assigned to this 

luminescence centrum (Lenz et al. 2015). 
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SUPPLEMENTAL FIGURE 1. WDS scan of the REE region (around Gd) with the spectral lines 

used for peaks and backgrounds of all relevant elements. 

SUPPLEMENTARY FIGURE 2. Depolarized 532 nm-excited Raman spectra of MGM with their 

peak wavenumbers; (a) full range spectra with assigned Raman bands; (b) deconvolution of 

spectra to single Gaussian-Lorentzian-shaped bands in the regions of 300–750 cm-1 and 900–

1100 cm-1. Intensity scale bar in arbitrary units (a. u.). 

SUPPLEMENTARY FIGURE 3. Depolarized Raman spectra of XGM taken with two different 

laser excitations: 532 nm (black line) and 633 nm (gray line) with marked regions of PL and 

Raman bands. Intensity scale bar in arbitrary units (a. u.). 
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