Atomistic insight into the ferroelastic post-stishovite transition by high-pressure single-crystal X-ray diffraction

YANYAO ZHANG1,*, STELLA CHARITON2, JIAMING HE3, SUYU FU1†, FANG XU4, VITALI B. PRAKAPENKA2, and JUNG-FU LIN1,*

1Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712, U.S.A
2Center for Advanced Radiation Sources, The University of Chicago, Illinois 60637, U.S.A
3Materials Science and Engineering Program, Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, U.S.A
4Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, U.K

ABSTRACT

The post-stishovite transition is a classic pseudo-proper typed ferroelastic transition with a symmetry-breaking spontaneous strain. This transition has been studied using high-pressure spontaneous strains, optic modes, and elastic moduli (Cijkl) based on the Landau modeling, but its atomistic information and structural distortion remain poorly understood. Here we have conducted synchrotron single-crystal X-ray diffraction measurements on stishovite crystals up to 75.3 GPa in a diamond-anvil cell. Analysis of the data reveals atomic positions, bond lengths, bond angles, and variations of SiO6 octahedra across the transition at high pressure. Our results show that the O coordinates split at ~51.4 GPa, where the apical and equatorial Si-O bond lengths cross over, the SiO6 octahedral distortions vanish, and the SiO6 octahedra start to rotate about the c axis. Moreover, distortion mode analysis shows that an in-plane stretching distortion (GM1 mode) occurs in the stishovite structure at high pressure while a rotational distortion (GM2 mode) becomes dominant in the post-stishovite structure. These results are used to correlate with elastic moduli and Landau parameters (symmetry-breaking strain ε1–ε2 and order parameter Q) to provide atomistic insight into the ferroelastic transition. When the bond lengths of two Si-O bonds are equal due to the contribution from the GM1 stretching mode, C11 converges with C12, and the shear wave V_{5[110]} polarizing along [110] and propagating along [110] vanishes. Values of ε1–ε2 and Q are proportional to the SiO6 rotation angle from the occurrence of the GM1 rotational mode in the post-stishovite structure. Our results on the pseudo-proper type transition are also compared with that for the proper type in albite and improper type in CaSiO3 perovskite. The symmetry-breaking strain, in all these types of transitions, arises as the primary effect from the structural angle (such as SiO6 rotation or lattice constant angle) and its relevant distortion mode in the low-symmetry ferroelastic phase.

Keywords: Single-crystal X-ray diffraction, stishovite, post-stishovite, ferroelastic transition, structural angle, distortion mode, Landau model, spontaneous strain

INTRODUCTION

Ferroelastic phase transitions occur in silicate minerals in the Earth’s interior because of temperature and pressure perturbations. These transitions in crystals involve a change in point group with a symmetry-breaking strain (Aizu 1969, 1970). According to the Landau theory, there are different types of the ferroelastic transitions, including proper, pseudo-proper, and improper types, which have different transition mechanisms (Carpenter and Salje 1998; Wadhawan 1982). The proper-type transition is driven by the symmetry-breaking spontaneous strain, whereas the pseudo-proper- and improper-type transitions are driven by other physical properties that are linearly and non-linearly coupled to the symmetry-breaking strain, respectively (Carpenter et al. 1998; Wadhawan 1982). These types of the ferroelastic phase transitions are also well known to be associated with elastic and optic mode anomalies, including sound wave velocity softening, which could occur in some naturally abundant minerals under high pressure-temperature (P-T) conditions in the Earth’s crust and mantle (Carpenter 2006; Salje 1990, 1992). Knowing their transition mechanisms and elastic properties under relevant P-T conditions can help understand the geophysics and geodynamics of the Earth’s interior. For example, the proper-type ferroelastic transition in fieldspar, comprising ~41 wt% of the continental crust (Rudnick et al. 2003), has been linked to seismic low-velocity anomaly in the crust (Brown et al. 2006; Liu et al. 2018; Waeselmann et al. 2016; Zhang and Klemperer 2005; Zhao et al. 2001). The stishovite and CaSiO3 perovskite (CaPv) are abundant phases in the subducted mid-ocean ridge basalt (MORB) in the lower mantle (Ishii et al. 2019). Their transition mechanisms and elastic anomalies have been used to explain seismic heterogeneities, infer the presence of the subducting slabs, and constrain mantle convection at depths (Helffrich 2006; Kaneshima 2016; Niu et al. 2003; Sun et al. 2022; Thomson et al. 2019; Wang et al. 2020). As a prototype of sixfold-coordinated silicates, the ferroelastic transition in stishovite is particularly important not only to aid our understanding of physical properties of subducting slabs in the mantle (Lakshtanov et al. 2007; Tsujiya 2011; Yang and Wu 2014; Zhang et al. 2021) but also...
to shed light on similar phase transitions in other rock-forming silicate and oxide minerals at depths.

The ferroelastic transition across the stishovite to post-stishovite phases at 50–55 GPa has been relatively well investigated using multiple experimental data sets, including optical Raman modes, unit-cell parameters from powder X-ray diffraction, and elastic moduli (C_{ij}) derived from sound velocities (Andrault et al. 2003; Buchen et al. 2018; Kingma et al. 1995; Lakshmanov et al. 2007; Zhang et al. 2021). These data are further complemented by Landau theory modeling (Carpenter et al. 2000; Hemley et al. 2000) and ab initio calculations (Karki et al. 1997a, 1997b; Yang and Wu 2014). Importantly, experimental optic modes and unit-cell parameters across the transition have been used in the pseudo-proper type Landau modeling to show that the transition is driven by the soft B_{1g} mode and accompanied by a symmetry-breaking spontaneous strain and a significant shear softening (Andrault et al. 2000; Carpenter et al. 2000; Hemley et al. 2000; Kingma et al. 1995). A recent experimental study on C_{ij} of stishovite across the post-stishovite transition has further shown that C_{11} converges with C_{12} at the transition pressure, where the shear wave Γ_{1110} polarizing along [1\overline{1}0] and propagating along [110] vanishes (Zhang et al. 2021). These results reveal macroscopic physical phenomena that need to be integrated with microscopic atomic displacements to have a complete understanding of the transition and its physical properties. Along this line, crystal structural parameters, such as O positions, bond lengths, and bond angles, are key to microscopically quantifying elastic anomalies and some Landau parameters, such as the symmetry-breaking spontaneous strain. A previous powder X-ray diffraction (PXRD) study has refined crystal structures of stishovite and post-stishovite phases at high pressure using the Rietveld structural analysis method (Andrault et al. 1998). The refined structural parameters showed considerable scattering at high pressure due to difficulties in solving crystal structures from the powder diffraction data (Harris et al. 2001).

On the other hand, high-resolution single-crystal X-ray diffraction (SCXRD) studies on the stishovite are limited to 30 GPa, far below the transition pressure (Hill et al. 1983; Ross et al. 1990; Sinclair and Ringwood 1978; Sugiyama et al. 1987; Yamanaka et al. 2002). This limitation was mainly due to the technical difficulty in conducting high-resolution SCXRD experiments at high pressure using a laboratory X-ray source. Recent advance in synchrotron X-ray diffraction technique now enables reliable crystal structure refinements to better understand the transition and elastic anomalies from the microscopic atomic perspective (Boff Dera 2010).

In this study, we performed synchrotron SCXRD experiments on stishovite crystals up to 75.3 GPa in a diamond-anvil cell (DAC) with large X-ray opening equipped with Bohler-Almax anvils and seats. The crystal structure of the stishovite or post-stishovite phase has been solved and refined at each experimental pressure. Refined structural parameters show that the O coordinates split at the transition pressure of ~51.4 GPa, where the bond lengths of apical and equatorial Si-O bonds are equal. This atomic information is further used to evaluate the deformation and rotation of the SiO$_6$ octahedron across the transition. Two symmetry modes, GM$_1$ and GM$_2$, are analyzed to reveal crystal structure distortion at high pressure. Our results show that a rotational mode with GM$_2$ symmetry occurs at the transition pressure where the SiO$_6$ octahedron starts to rotate about the c axis. Furthermore, we correlate the microscopic bond length difference of two Si-O bonds with the macroscopic elastic properties in the literature, such as C_{11}, C_{12}, and F_{1110} (Zhang et al. 2021). The symmetry-breaking spontaneous strain e_1-e_2 and order parameter Q in a pseudo-proper type Landau model are quantified using the SiO$_6$ rotation angle Φ that comes from the GM$_3$ mode. Together with early studies on other types of the ferroelastic transitions (Kroll et al. 1980; Zhao et al. 1993a, 1993b), we, therefore, conclude that the symmetry-breaking strain changes linearly with a given structural angle in all types of ferroelastic transitions.

Experimental Methods and Data Analysis

Stishovite single crystals were synthesized using a 1000 ton Kawai-type multi-anvil apparatus at the Institute for Planetary Materials, Okayama University (run no. 1K1642). The synthesis and characterization of the crystals have been reported elsewhere (Xu et al. 2017; Zhang et al. 2021). Briefly, reagent-grade silicic acid (99.9% purity (SiO$_2$ with 13 wt% H$_2$O) was used as the starting sample, which was loaded into a platinum capsule. The sample assembly was compressed to 12 GPa and then heated to 1873 K. The temperature of the assembly was slowly cooled down to 1473 K with a rate of 100 K/h (4 h in total) before quenched to ambient temperature and then decompressed to ambient pressure. Stishovite crystals recovered from the sample capsule are transparent and free of twinning domains and inclusions under optical and petrographic microscopes (Zhang et al. 2021). Electron microprobe analyses of several selected crystals show a chemical formula of SiO$_2$ without any other detectable elements.

Analysis of unpolarized Fourier-transform infrared spectroscopic spectra shows ~19 ppm wt. water content in the selected crystals (Xu et al. 2017; Zhang et al. 2021). The amount of water in the Al-free stishovite crystals is consistent with previous studies (Litavsk et al. 2007; Pawley et al. 1993). Three stishovite crystals were loaded into a short-symmetric DAC with a pair of Bohler-Almax designed diamond anvils mounted onto WC seats with a large aperture of ~80° (40°). This allowed us to obtain reflections at a wide 2θ range (2θ, Online Materials’ Fig. S1). The culet size of the diamond anvils is 200 μm in diameter. A Rhodium gasket with an initial thickness of 260 μm was pre-indent to ~24 μm thick and subsequently a hole of 120 μm diameter was drilled in the center of the pre-indent area and used as the sample chamber. To obtain more reflections from stishovite, we selected three stishovite crystals with (2.4, 4.7, 1.7) (~0.8, 0.3, 1.6), and (0.8, 2.2, ~0.9) orientations, respectively, which were determined by SCXRD measurements. The crystals were double-side polished down to ~7 μm thick using 3M diamond films. They were then cut into ~10–20 μm big platelets before being loaded into the sample chamber (Fig. 1). A Cu powder (Goodfellow; 99.5% purity) was pressed into ~2 μm thick, cut into ~5 μm wide disks, and placed close to the center of the sample chamber as the pressure calibrant (Fei et al. 2007). The three stishovite platelets were loaded at an equal distance to the Au calibrant to minimize possible pressure gradient across the crystals in the chamber (Fig. 1c). Neon gas was loaded into the sample chamber as the pressure medium using a gas loading system at the Mineral Physics Laboratory of the University of Texas at Austin.

High-pressure SCXRD experiments were conducted up to 75.3 GPa at room temperature at 13ID-D beamline of the GSECARS, Advanced Photon Source, Argonne National Laboratory (Figs. 1a and 1b). An incident X-ray beam of 0.2952 Å wavelength (42 keV energy) was focused down to a beam size of ~3 × 3 μm2 at the sample position. Approximately 10% intensity of the incident X-ray was used for the measurements to avoid peak saturations. The sample stage was rotated over ±31° about the vertical axis of the DAC during data collections.

The XRD patterns were collected using a CuTe Pilatus 1 M detector with 1 or 2 s exposure time at every 0.5° step of the rotation. A membrane was used to increase and control pressure in the sample chamber. After each pressure increase, we monitored the pressure of the sample chamber until it was stabilized before SCXRD measurements were conducted. Pressure uncertainties were evaluated from analysis of XRD spectra of Au collected right before and after each set of SCXRD measurements (Fei et al. 2007). Additionally, SCXRD measurements at ambient conditions were conducted in the Department of Chemistry.
The quality of the refinements at each pressure was evaluated by residual σ-determined by residual σ R-factors (Dolomanov et al. 2009). The measured SCXRD data were used to solve the crystal structure and refine the atomic positions of the stishovite or post-stishovite phase at high pressure following a previous SCXRD processing method (Bykova 2015). At a given pressure, we initially used CrystAlisPRO software to find the unit cell, determine lattice parameters, extract intensity for each hkl reflection, and perform absorption corrections for each crystal (Rigaku 2015). The refinement of the lattice parameters at high pressure (Table 1). Furthermore, 24 to 63 reflections of $I > 3\sigma(I)$, where I is the intensity and σ is the standard deviation, were used to determine lattice parameters at high pressure (Table 1). The refined structural parameters were further used to perform distortion mode analysis across the post-stishovite transition using AMPLIMODES program (Orobengoa et al. 2009). The program is used to evaluate symmetry-adapted distortion modes. The amplitude of the individual mode can reflect its contribution to the global structural distortion (Gavryluk et al. 2019).

Results

Crystallographic analysis

Analysis of the collected SCXRD images shows that reflection spots of the three crystals display a round shape with a full-width at half maximum (FWHM) of $<0.1^\circ$. The FWHM is almost invariant up to 75.3 GPa, indicating that the single-crystal quality of stishovite was preserved in compression in a neon medium (Yamanaka et al. 2002) (Figs. 1c and 1d). We observed 66 to 239 total reflections from the crystals at high pressure (Figs. 1a and 1b). These reflections were then grouped into 31 to 55 unique reflections, which were used to determine lattice parameters at high pressure (Table 1). Furthermore, 24 to 63 reflections of $I > 3\sigma(I)$, where I is the intensity and σ is the standard deviation, were used to determine the space group and to refine the atomic positions of the crystal at high pressure. Our analyses show that the crystal is in the tetragonal stishovite structure with $P4_2/mnm$ (No. 136) space group at pressures up to 49.8 GPa (Online Materials1 Figs. S2 and S3; Online Materials1 Table S1; Table 1). From 52.4 to 75.3 GPa, the crystal is stable in an orthorhombic structure with $Pnma$ (No. 58) space group, called the $CaCl_2$-type post-stishovite phase (Online Materials1 Figs. S2 and S3; Online Materials1 Table S1; Table 1). These results indicate that the post-stishovite transition occurs between 49.8 and 52.4 GPa, consistent with previous studies (Andraut et al. 1998; Hemley et al. 2000; Kingma et al. 1995; Zhang et al. 2021). Values of R_{int} and R_1 are 0.4–14.9% and...
but it decreases with increasing pressure much faster than the equatorial Si-O1(2) bond length at ambient conditions, and 3b). The apical Si-O3 bond length is initially much longer continuously with increasing pressure up to 75.3\(\text{GPa} \), resulting in a continuous decrease of the unit-cell volume (Online Materials1 Figs. S2b and S5). The deformation of SiO\(_6\) octahedron can be quantitatively determined by the distortion index and the bond angle variance based on the refined bond lengths and bond angles, respectively. The distortion index is defined as:

$$D(\%) = \frac{100}{6} \sum \frac{|l_{i} - l_{avg}|}{l_{avg}}$$

where \(l_{i} \) is the Si-O bond length and \(l_{avg} \) is the average Si-O bond length (Renner and Lehmann 1986). The bond angle variance is defined as:

$$\sigma^{2} (\text{deg}^{2}) = \frac{1}{11} \sum_{i=1}^{11} (\alpha_{i} - 90^\circ)^{2}$$

1.3–7.8\%, respectively, indicating the refined crystal structures are of good quality (Table 1).

Atomic coordinates, bond lengths, and bond angles can be derived from the refined crystal structures (Figs. 2 and 3; Table 2). Using Si atom positions in the stishovite structure as the reference, the \(x \) (or \(y \)) coordinate of oxygen relative to the Si positions changes slightly from 0.306 at ambient conditions to 0.303 at 0.303 at 49.8 GPa (Figs. 2a and 3a). Crossing into the post-stishovite phase, the \(x \) coordinate of oxygen drastically decreases from 0.303 at 52.4 GPa to 0.279 at 75.3 GPa, resulting in a continuous decrease of the unit-cell volume (Online Materials1 Figs. S2b and S5). The deformation of SiO\(_6\) octahedron across the post-stishovite transition (Figs. 2 and 3). These analyses show that the SiO\(_6\) octahedron rotation angle of 5.1\(^\circ\), which is the SiO\(_6\) octahedron rotation about the \(c \) axis with respect to the ideal stishovite structure in \(a \).

Figure 2. Representative refined crystal structures of stishovite and post-stishovite at high pressure. (a) Stishovite at 49.8 GPa; (b) post-stishovite at 73.8 GPa. Si and O (O1, O2, and O3) atoms are shown as blue and red balls, respectively. Lattice parameters, Si-O bond lengths, and O1-Si-O1 bond angles are labeled in the representative structures, and can also be found in Tables 1 and 2. Black arrows in \(b \) show \(\Phi \) rotation angle of 5.1\(^\circ\), which is the SiO\(_6\) octahedron rotation about the \(c \) axis with respect to the ideal stishovite structure in \(a \).

Table 1. Structure refinement results for stishovite and post-stishovite at high pressure

<table>
<thead>
<tr>
<th>(P (\text{GPa}))</th>
<th>Space group</th>
<th>(a (\text{Å}))</th>
<th>(b (\text{Å}))</th>
<th>(c (\text{Å}))</th>
<th>(V (\text{Å}^3))</th>
<th>Unique refl.*</th>
<th>(R_{wp} (%))</th>
<th>(R_{I} (%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(P_{4}2_{1}mnm)</td>
<td>4.1752(1)</td>
<td>4.6443(3)</td>
<td>2788</td>
<td>4.63</td>
<td>1.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.8(1)</td>
<td>(P_{4}2_{1}mnm)</td>
<td>4.1600(3)</td>
<td>4.6241(1)</td>
<td>55</td>
<td>0.61</td>
<td>3.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.8(1)</td>
<td>(P_{4}2_{1}mnm)</td>
<td>4.1461(5)</td>
<td>4.5571(1)</td>
<td>48</td>
<td>1.52</td>
<td>5.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.0(2)</td>
<td>(P_{4}2_{1}mnm)</td>
<td>4.1300(4)</td>
<td>4.4911(1)</td>
<td>37</td>
<td>0.78</td>
<td>6.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.0(1)</td>
<td>(P_{4}2_{1}mnm)</td>
<td>4.1066(4)</td>
<td>4.4811(4)</td>
<td>48</td>
<td>0.35</td>
<td>6.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.9(3)</td>
<td>(P_{4}2_{1}mnm)</td>
<td>4.1045(4)</td>
<td>4.4646(8)</td>
<td>50</td>
<td>1.65</td>
<td>3.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.7(1)</td>
<td>(P_{4}2_{1}mnm)</td>
<td>4.0891(4)</td>
<td>4.3973(5)</td>
<td>41</td>
<td>12.74</td>
<td>6.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.4(1)</td>
<td>(P_{4}2_{1}mnm)</td>
<td>4.0875(4)</td>
<td>4.4051(1)</td>
<td>43</td>
<td>4.37</td>
<td>7.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.8(2)</td>
<td>(P_{4}2_{1}mnm)</td>
<td>4.0681(5)</td>
<td>4.3641(1)</td>
<td>43</td>
<td>4.37</td>
<td>7.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.5(2)</td>
<td>(P_{4}2_{1}mnm)</td>
<td>4.0520(4)</td>
<td>4.2953(5)</td>
<td>52</td>
<td>1.70</td>
<td>7.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.8(2)</td>
<td>(P_{4}2_{1}mnm)</td>
<td>4.0318(6)</td>
<td>4.2382(5)</td>
<td>48</td>
<td>5.80</td>
<td>6.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.4(2)</td>
<td>(P_{4}2_{1}mnm)</td>
<td>4.0134(7)</td>
<td>4.1889(5)</td>
<td>34</td>
<td>8.91</td>
<td>6.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.7(2)</td>
<td>(P_{4}2_{1}mnm)</td>
<td>3.9875(7)</td>
<td>4.1095(1)</td>
<td>46</td>
<td>1.06</td>
<td>5.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49.8(2)</td>
<td>(P_{4}2_{1}mnm)</td>
<td>3.9819(10)</td>
<td>4.0921(10)</td>
<td>36</td>
<td>1.01</td>
<td>5.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.4(2)</td>
<td>(P_{nnn})</td>
<td>3.9440(30)</td>
<td>4.0150(19)</td>
<td>47</td>
<td>1.25</td>
<td>5.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54.2(2)</td>
<td>(P_{nnn})</td>
<td>3.9320(30)</td>
<td>4.0128(18)</td>
<td>56</td>
<td>0.87</td>
<td>5.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55.6(2)</td>
<td>(P_{nnn})</td>
<td>3.9300(40)</td>
<td>4.0097(10)</td>
<td>54</td>
<td>4.82</td>
<td>6.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.6(3)</td>
<td>(P_{nnn})</td>
<td>3.9140(50)</td>
<td>4.0118(12)</td>
<td>31</td>
<td>14.89</td>
<td>4.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.3(3)</td>
<td>(P_{nnn})</td>
<td>3.9010(40)</td>
<td>4.0089(12)</td>
<td>41</td>
<td>2.94</td>
<td>6.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64.4(3)</td>
<td>(P_{nnn})</td>
<td>3.8880(40)</td>
<td>4.0080(20)</td>
<td>46</td>
<td>4.80</td>
<td>6.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.8(3)</td>
<td>(P_{nnn})</td>
<td>3.8850(40)</td>
<td>4.0070(10)</td>
<td>41</td>
<td>12.90</td>
<td>6.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.0(3)</td>
<td>(P_{nnn})</td>
<td>3.8710(40)</td>
<td>4.0051(10)</td>
<td>41</td>
<td>1.40</td>
<td>6.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71.0(3)</td>
<td>(P_{nnn})</td>
<td>3.8580(30)</td>
<td>4.0040(9)</td>
<td>46</td>
<td>1.91</td>
<td>4.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.8(3)</td>
<td>(P_{nnn})</td>
<td>3.8500(30)</td>
<td>4.0016(8)</td>
<td>45</td>
<td>2.60</td>
<td>6.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75.3(3)</td>
<td>(P_{nnn})</td>
<td>3.8380(20)</td>
<td>3.9974(7)</td>
<td>46</td>
<td>0.55</td>
<td>4.42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Unique refl: number of unique observed reflections.
At high pressure, the distortion index decreases from 1.3% at ambient pressure to zero at ~51.4 GPa (Figs. 3a and 4b). On the other hand, the rotation of the SiO₆ octahedron about the c axis can be evaluated with respect to the stishovite structure using a formula, \(\Phi(\circ) = 45\circ - \arctan \left(\frac{a_x}{b_y} \right) \), where \(a_x \) and \(b_y \) are the x- and y-coordinate of O atoms, respectively (Bärnighausen et al. 1984; Range et al. 1987) (Fig. 4c). These analyses show that the SiO₆ octahedron does not rotate in the stishovite phase but starts to rotate about the c axis, crossing into the post-stishovite phase. At 75.3 GPa, the SiO₆ octahedral rotation is about 5.4°.

Our structural refinement results for stishovite are, for the first order, consistent with previous SCXRD studies up to 30 GPa (Hill et al. 1983; Ross et al. 1990; Sinclair and Ringwood 1978; Sugiyama et al. 1987; Yamanaka et al. 2002) (Figs. 3 and 4). Additionally, our results across the post-stishovite transition are generally consistent with a PXRD study using the Rietveld structural analysis (Andrault et al. 1998), except for the octahedral volume (Online Materials Fig. S5). We note that our SCXRD data have much higher resolutions and are denser in the vicinity of the transition pressure such that detailed structural evolutions are clearly revealed across the post-stishovite transition. On the other hand, comparisons between ab initio calculations and experimental results show very large discrepancies in the structural parameters, especially for the post-stishovite phase (Figs. 3 and 4). For example, theoretical calculations show equal equatorial and apical Si-O bond lengths in the post-stishovite structure at high pressure (Karki et al. 1997b), which is contrary to our results. This could be due to difficulties in properly optimizing spontaneous strains in the post-stishovite phase to account for exchange-correlation interactions in the local-density approximation (LDA). This in turn can affect accuracy in theoretically-predicted elastic moduli across the ferroelastic post-stishovite transition, which are quite different from experimentally derived elastic moduli (Karki et al. 1997a; Yang and Wu 2014; Zhang et al. 2021). Our study here not only provides reliable structural models of the stishovite and post-stishovite phases but also serves as benchmarks for future ab initio calculations.

Distortion mode analysis

As shown in the previous section, the stishovite phase has the space group of \(P4_{2}mnm \) while the post-stishovite phase has the space group of \(Pnmm \), revealing a group-subgroup relationship between these two space groups across the transition. In other words, the low-symmetry post-stishovite structure can be considered as the high-symmetry stishovite structure undergoing a symmetry-adapted lattice distortion. Therefore, analysis of the symmetry mode is another useful way to describe crystal structures in terms of the displacement of a set of atoms that are related by a given symmetry, as compared to standard crystallographic descriptions in terms of individual bond length and bond angle. Particularly, amplitude of symmetry modes represents the magnitude of lattice distortions with different symmetry representations. This information can thus help better understand symmetry-adapted structure distortions across the ferroelastic post-stishovite transition.

Using the refined structural data from our study, we have calculated maximum atomic displacements and distortion mode amplitudes in a distorted crystal structure at a given pressure with
Table 2. O positions, bond lengths, and bond angles of stishovite and post-stishovite at high pressure

<table>
<thead>
<tr>
<th>P (GPa)</th>
<th>x</th>
<th>y</th>
<th>Bond length (Å)</th>
<th>Bond angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.3061(1)</td>
<td>0.3061(1)</td>
<td>1.8075(6), 1.7565(4)</td>
<td>90.00(5), 90.00(5), 98.65(5), 81.35(5)</td>
</tr>
<tr>
<td>2.8(1)</td>
<td>0.3060(3)</td>
<td>0.3060(3)</td>
<td>1.803(1), 1.755(1)</td>
<td>90.00(7), 90.00(7), 98.74(7), 81.26(7)</td>
</tr>
<tr>
<td>7.8(1)</td>
<td>0.3052(5)</td>
<td>0.3052(5)</td>
<td>1.788(3), 1.751(1)</td>
<td>90.00(9), 90.00(9), 98.67(8), 81.33(8)</td>
</tr>
<tr>
<td>13.0(2)</td>
<td>0.3046(5)</td>
<td>0.3046(5)</td>
<td>1.775(3), 1.745(1)</td>
<td>90.00(9), 90.00(9), 98.57(8), 81.43(8)</td>
</tr>
<tr>
<td>16.0(1)</td>
<td>0.3046(5)</td>
<td>0.3046(5)</td>
<td>1.769(3), 1.742(1)</td>
<td>90.00(9), 90.00(9), 98.70(8), 81.30(8)</td>
</tr>
<tr>
<td>16.9(3)</td>
<td>0.3046(3)</td>
<td>0.3046(3)</td>
<td>1.768(13), 1.740(1)</td>
<td>90.00(9), 90.00(9), 98.64(8), 81.36(8)</td>
</tr>
<tr>
<td>19.7(1)</td>
<td>0.3039(5)</td>
<td>0.3039(5)</td>
<td>1.757(3), 1.736(2)</td>
<td>90.00(9), 90.00(9), 98.45(8), 81.55(8)</td>
</tr>
<tr>
<td>21.4(1)</td>
<td>0.3044(6)</td>
<td>0.3044(6)</td>
<td>1.760(3), 1.737(2)</td>
<td>90.00(10), 90.00(10), 98.76(9), 81.24(9)</td>
</tr>
<tr>
<td>26.8(2)</td>
<td>0.3048(6)</td>
<td>0.3048(6)</td>
<td>1.754(3), 1.728(2)</td>
<td>90.00(10), 90.00(10), 98.92(9), 81.08(9)</td>
</tr>
<tr>
<td>28.5(2)</td>
<td>0.3038(6)</td>
<td>0.3038(6)</td>
<td>1.741(3), 1.725(2)</td>
<td>90.00(10), 90.00(10), 98.64(9), 81.36(9)</td>
</tr>
<tr>
<td>33.8(2)</td>
<td>0.3036(4)</td>
<td>0.3036(4)</td>
<td>1.731(2), 1.719(1)</td>
<td>90.00(8), 90.00(8), 98.67(8), 81.33(8)</td>
</tr>
<tr>
<td>40.4(2)</td>
<td>0.3036(4)</td>
<td>0.3036(4)</td>
<td>1.723(17), 1.7125(16)</td>
<td>90.00(10), 90.00(10), 98.78(9), 81.22(9)</td>
</tr>
<tr>
<td>48.7(2)</td>
<td>0.3028(5)</td>
<td>0.3028(5)</td>
<td>1.708(3), 1.705(2)</td>
<td>90.00(9), 90.00(9), 98.56(8), 81.44(8)</td>
</tr>
<tr>
<td>49.8(2)</td>
<td>0.3023(4)</td>
<td>0.3023(4)</td>
<td>1.702(2), 1.704(3)</td>
<td>90.00(8), 90.00(8), 98.43(8), 81.57(8)</td>
</tr>
<tr>
<td>52.4(2)</td>
<td>0.2943(12)</td>
<td>0.3106(5)</td>
<td>1.704(4), 1.705(3)</td>
<td>89.87(15), 90.13(15), 98.59(14), 81.41(14)</td>
</tr>
<tr>
<td>54.2(2)</td>
<td>0.2912(12)</td>
<td>0.3121(5)</td>
<td>1.697(4), 1.706(3)</td>
<td>89.92(15), 90.08(15), 98.38(14), 81.62(14)</td>
</tr>
<tr>
<td>55.6(2)</td>
<td>0.2927(7)</td>
<td>0.3127(6)</td>
<td>1.702(3), 1.6986(18)</td>
<td>89.91(12), 90.09(12), 98.57(11), 81.43(11)</td>
</tr>
<tr>
<td>58.6(3)</td>
<td>0.2877(12)</td>
<td>0.3152(6)</td>
<td>1.693(4), 1.701(3)</td>
<td>89.96(14), 90.04(14), 98.21(13), 81.79(13)</td>
</tr>
<tr>
<td>62.0(3)</td>
<td>0.2854(16)</td>
<td>0.3167(8)</td>
<td>1.689(5), 1.699(4)</td>
<td>89.98(16), 90.02(16), 98.06(15), 81.94(15)</td>
</tr>
<tr>
<td>64.4(3)</td>
<td>0.2850(14)</td>
<td>0.3175(7)</td>
<td>1.687(5), 1.698(4)</td>
<td>89.91(16), 90.09(16), 98.28(15), 81.72(15)</td>
</tr>
<tr>
<td>65.8(3)</td>
<td>0.2841(14)</td>
<td>0.3188(7)</td>
<td>1.688(5), 1.696(3)</td>
<td>89.94(15), 90.06(15), 98.34(15), 81.68(15)</td>
</tr>
<tr>
<td>68.0(3)</td>
<td>0.2814(12)</td>
<td>0.3200(6)</td>
<td>1.682(4), 1.696(3)</td>
<td>89.96(14), 90.04(14), 98.09(14), 81.91(14)</td>
</tr>
<tr>
<td>71.0(3)</td>
<td>0.2807(19)</td>
<td>0.3211(5)</td>
<td>1.681(3), 1.693(2)</td>
<td>89.90(12), 90.10(12), 98.17(12), 81.83(12)</td>
</tr>
<tr>
<td>73.8(3)</td>
<td>0.2794(12)</td>
<td>0.3216(6)</td>
<td>1.677(4), 1.692(3)</td>
<td>89.90(14), 90.10(14), 98.07(14), 81.93(14)</td>
</tr>
<tr>
<td>75.3(3)</td>
<td>0.2788(8)</td>
<td>0.3231(4)</td>
<td>1.673(3), 1.687(2)</td>
<td>89.90(11), 90.10(11), 98.17(11), 81.83(11)</td>
</tr>
</tbody>
</table>

Note: Please refer to Figure 2 for the meaning of the atom symbols.

Figure 4. Refined SiO₆ octahedron parameters of stishovite and post-stishovite at high pressure. (a) Bond length distortion (D) of the octahedron as a function of pressure. The distortion vanishes at the transition. (b) Angle variance (σ) of the octahedron as a function of pressure. It remains constant in stishovite but decreases with increasing pressure in the post-stishovite phase. (c) The rotation of the SiO₆ octahedron about the c axis (Φ) with pressure only occurs in the post-stishovite phase (also see Fig. 2 for the rotation). Lines show the best polynomial fits to the data. The gray vertical band represents the transition pressure. Previous studies are also shown for comparison (Andraut et al. 1998; Hill et al. 1983; Karki et al. 1997b; Ross et al. 1990; Sinclair and Ringwood 1978; Sugiyama et al. 1987; Yamanaka et al. 2002).

Discussion

Our single-crystal X-ray diffraction refinements on the refined Si and O coordinates, Si-O bond lengths, and O-Si-O bond angles across the post-stishovite transition can be used to correlate with previous elasticity and Landau modeling studies to shed new light on the pseudo-proper type ferroelastic transition (Carpenter et al. 2000; Hemley et al. 2000; Zhang et al. 2021). First, we co-plot Si-O bond length difference and elastic properties at given experimental pressures (Fig. 6). The elastic moduli of stishovite and post-stishovite are taken from a recent study that derived the moduli from measured sound velocities using combined Brillouin and impulsive stimulated light scattering techniques at high pressure (Zhang et al. 2021). The elastic modulus C₁₁ increases with decreasing Si-O bond length difference but flattens when the difference is below 0.01 Å, while C₁₂...
increases significantly across the transition (Fig. 6a). As a result, the elastic modulus (\(C_{11} - C_{12}\))/2, which reflects the strain response to the shear stress along the [110] direction in the stishovite structure (Bell and Rupprecht 1963), becomes zero when the apical and equatorial Si-O bond lengths become equal due to structure (Bell and Rupprecht 1963), becomes zero when the shear stress along the [110] direction in the stishovite increases significantly across the transition (Fig. 6a). As a result, the Si-O bond length difference becomes lower than ~0.01 Å across the post-stishovite transition at high pressure. \(\dot{\omega}^{2}\) increases close to the post-stishovite transition pressure. Across into the post-stishovite phase, \(\dot{\omega}_{\text{11110}}^{2}\) increases as the Si-O bond length difference increases (Fig. 6b).

We also use the structural parameters to quantify the spontaneous strains \((e_{1} \text{ and } e_{2})\) and order parameter \(Q\) in a pseudo-proper type Landau model at high pressure (Fig. 7). The splitting of O coordinates leads to a symmetry reduction from tetragonal to orthorhombic structure and an occurrence of the GM1 rotational mode. Because \(\dot{\omega}_{\text{11110}}^{2} > \dot{\omega}_{\text{11110}}\) in the orthorhombic post-stishovite phase, the elastic moduli \(C_{11}\), \(C_{12}\), and \(C_{44}\) of the post-stishovite phase increase (Figs. 3b, 5c, and 6a). The corresponding Born criterion, \(C_{11}C_{22} - C_{12}^{2}\), becomes positive in the post-stishovite phase, indicating its stability after the crossover of the equatorial and apical Si-O bond lengths.

The ferroelastic post-stishovite transition is also manifested by vanishing the shear wave \(V_{11110}\) (Zhang et al. 2021). \(V_{11110}\) decreases from 5.5 km/s to zero as the Si-O bond length difference decreases from 0.05 Å to zero (Fig. 6b). We should note that the strong reduction of \(V_{11110}\) starts from ~40 GPa where the Si-O bond length difference becomes lower than ~0.01 Å. This nonlinear pressure dependence of elasticity is one important consequence of the pseudo-proper typed ferroelastic transition in stishovite whose transition mechanism is the softening of the \(B_{1g}\) mode (Carpenter and Salje 1998). The Si-O bond lengths represent the bonding strength of the lattice that determines the frequency of the optic mode. Previous Raman shift data and a pseudo-proper typed Landau model have shown that squared Raman shift of the \(B_{1g}\) mode (\(\dot{\omega}^{2}\)) is proportional to pressure (Carpenter et al. 2000; Hemley et al. 2000; Kingma et al. 1995). That is, \(\dot{\omega}^{2} \propto P\) or \(\dot{\omega} \propto \sqrt{P}\). This nonlinear relation in the Raman shift of the soft \(B_{1g}\) mode with respect to pressure can thus lead to the nonlinear behavior in the shear velocity reduction.
to the occurrence of a negative spontaneous strain longer with respect to the ideal stishovite structure. All these lead to the spontaneous strains e_1 and e_2, whose eigenvalue is the aforementioned elastic modulus $C_{11}-C_{12}$, can be quantified by the SiO$_6$ octahedron rotation angle Φ (Fig. 7b). That is, e_1-e_2 is proportional to Φ. Because the order parameter Q is coupled linearly to the strain e_1-e_2 (Carpenter et al. 2000), Q also changes linearly with Φ (Fig. 7c). We should note that the value of Q is obtained from a set of Landau parameters that were derived from combined experimental elastic moduli, lattice parameters, and Raman shift data (Zhang et al. 2021).

These crystallographic data and symmetry mode results can be correlated with Landau modeling parameters to have a better understanding of the transition. Previous studies have shown that the post-stishovite transition belongs to the pseudo-proper type, which is driven by the soft B_{1g} optic mode (Carpenter et al. 2000; Kingma et al. 1995). The Raman active B_{1g} mode represents a rotational vibration of O atoms about the c axis (Henley et al. 1986; Traylor et al. 1971). As the two Si-O bond lengths cross over each other due to an in-plane stretching of O atoms with GM$_1$ symmetry (Figs. 3b, 5b, and 5c), the Raman shifts of the B_{1g} optic mode decrease and would become zero at the critical pressure ($P_c = 110.2$ GPa) (Kingma et al. 1995; Zhang et al. 2021). However, the transition occurs at a much lower pressure of ~51.4 GPa where the two Si-O bond lengths are equal (Fig. 3b). The O coordinates split across the transition (Fig. 3a), leading to a symmetry breaking from the point group 422 to 222 where one fourfold axis becomes a twofold axis. This symmetry reduction further results in the occurrence of the GM$_2$ rotational mode and the SiO$_6$ octahedron rotation about the c axis (Figs. 5b and 5d). As a result, symmetry-breaking spontaneous strains appear (Figs. 7a and 7b). The eigenvalue $C_{11}-C_{12}$ and acoustic velocity $V_{S[110]}$ accordingly vanish at the transition, leading to significant shear wave velocity softening (Zhang et al. 2021). Therefore, the Si-O bond lengths and SiO$_6$ octahedron rotation, together with their relevant GM$_1$ and GM$_2$ distortion modes, play a key role in the ferroelastic transition from the stishovite to the post-stishovite phase.

Implications

As discussed in the introduction, pseudo-proper, proper, and improper typed ferroelastic transitions can occur in representative...
naturally occurring silicate minerals in the Earth’s deep crust and mantle. The ferroelastic transitions are manifested by the appearance of the symmetry-breaking spontaneous strain in the low-symmetry ferroelastic phase, although the driving force is different among these ferroelastic transitions (Wadwhan 1982). Our study on the post-stishovite transition, a typical pseudo-proper typed ferroelastic transition, reveals the relationship between the macroscopic spontaneous strain and microscopic structural angle. Previous studies on proper and improper typed transitions have also shown a similar relationship. For example, albite (NaAlSi3O8, feldspar) undergoes a proper typed ferroelastic transition from monoclinic (space group: C2/m) to triclinic (space group: CT) structure at ~1300 K (Salje 1985; Salje et al. 1985). The spontaneous strain εα varies linearly with −cos α, where α is the lattice constant angle (Carpenter et al. 1998; Kroll et al. 1980). Improper typed ferroelastic transition occurs in CaPv from cubic to tetragonal phase at ~420 K and 12 GPa with the tetragonal shear strain proportional to the squared rotation angle of the SiO6 octahedron about the c axis (Φc) (Thomson et al. 2019; Zhao et al. 1993a, 1993b). These results reveal that the symmetry-breaking strain occurs as the primary effect from the structural angle in the low-symmetry ferroelastic phase. Furthermore, the structural angles can be linked to given symmetry-adapted distortion modes based on a group-subgroup relation. For example, considering that CaPv has a parent structure with Pm3m space group and a low-symmetry phase with the subgroup I4/mcm, the Φc angle can be attributed to a distortion mode with symmetry R Σ 4 (Perez-Mato et al. 2010). Therefore, the change of the structural angle with the occurrence of symmetry-breaking distortion mode is an important consequence of the ferroelastic transition. Our results here can be combined with sound velocity and elastic moduli studies across the three types of ferroelastic transitions in silicates and oxides at high pressure. This helps shed light on the abnormal seismic properties across the transitions especially in the subducting slabs and deep crustal regions.

ACKNOWLEDGMENTS

We thank Vincent Lynch for his assistance on SCXRD measurements at ambient conditions and data analysis. High-pressure SCXRD experiments were performed at 13ID-D, GSECARS.

FUNDING

GSECARS was supported by the National Science Foundation (EAR-0622171). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Jung-Fu Lin acknowledges support from Geophysics Program of the U.S. National Science Foundation (EAR-1916941 and EAR-2001381) and the Joint-Use User Program of the Institute for Planetary Materials, Okayama University. The authors acknowledge partial support of the publication fee by the Owen-Coates Funds of the Department of Geological Sciences, the University of Texas at Austin.

REFERENCES CITED

displaceable phase transition temperature in alkali feldspar. European Journal of
Mineralogy, 30, 1071–1081.
Momma, K., and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of
Niu, F., Kawakatsu, H., and Fukuoka, Y. (2003) Seismic evidence for a chemical hetero-
genility in the midmantle: A strong and slightly dipping seismic reflector beneath
Crystallography, 42, 820–833.
Sun, N., Bian, H., Zhang, Y., Lin, J.F., Prukapenkova, V.B., and Mao, Z. (2022) High-
pressure experimental study of tetragonal CaSiO3 perovskite to 200 GPa. American
Mineralogist, 107, 110–115.
Thomson, A., Crichton, W., Brodholt, J., Wood, I., Siersch, N., Muir, J., Dobson, D.,
and Hunt, S. (2019) Seismic velocities of CaSiO3 perovskite can explain LLSPVs in
Tsuzuki, T. (2011) Elasticity of subducted basaltic crust at the lower mantle pressures:
Insights on the nature of deep mantle heterogeneity. Physics of the Earth and
Planetary Interiors, 188, 142–149.
Wadati, K. (1982) Ferroelasticity and related properties of crystals. Phase Transi-
tions, 3, 3–103.
Wang, W., Xu, Y., Sun, D., Ni, S., Wentzcovitch, R., and Wu, Z. (2020) Velocity and
density characteristics of subducted oceanic crust and the origin of lower-mantle
and oxygen self-diffusion in stishovite: Implications for stability of SiO2-rich seismic
Yamazaki, T., Fukuoka, T., and Mirnaka, J. (2002) Bonding character of SiO6, stishovite
Yang, R., and Wu, Z. (2014) Elastic properties of stishovite and the CaCl2-type silica at
the mantle temperature and pressure: An ab initio investigation. Earth and Planetary
Science Letters, 404, 14–21.
Zhao, W., Mechie, J., Brown, L.D., Guo, J., Haines, S., Hearn, T., Klemperer, S.L., Ma,
and Hunt, S. (2019) Seismic velocities of CaSiO3 perovskite can explain LLSPVs in
Zhao, Y., Fu, S., Wang, B., and Lin, J.-F. (2021) Elasticity of a pseudo-proper ferroelas-
tic transition from stishovite to post-stishovite at high pressure. Physical Review
Letters, 126, 025701 025701.
phase transition of perovskite—data for NaMgF3 perovskite. Part II. Physics of the
——— (1993b) Thermal expansion and structural distortion of perovskite—data for
Zhao, W., Mechie, J., Brown, L.D., Guo, J., Haines, S., Hearn, T., Klemperer, S.L., Ma,
as derived from project INDEPTH wide-angle seismic data. Geophysical Journal

Endnote:
1 Deposit item AM-23-18458, Online Materials. Deposit items are free to all readers
and found on the MSA website, via the specific issue’s Table of Contents (go to http://
The CIF has been peer reviewed by our Technical Editors.