An UV/Vis/NIR optical absorption spectroscopic and color investigation of transition-metal-doped gahnite (ZnAl₂O₄ spinel) crystals grown by the flux method

MICHAEL N. TARAN¹, OLEKSII A. VYSHEVSKYI¹, AND CHARLES A. GEIGER²,3,*

¹M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation, National Academy of Sciences of Ukraine, Palladin Avenue 34, 03680 Kyiv-142, Ukraine
²Department Chemistry and Physics of Materials, University of Salzburg, Jakob Haringer Str. 2a, A-5020 Salzburg, Austria
³Department of Mineralogy and Crystallography, University of Vienna, Josef-Holaubek-Platz 2 (UZA 2), A-1090 Vienna, Austria

ABSTRACT

Synthetic flux-grown end-member gahnite, ZnAl₂O₄, and several different colored crystals doped with one or more transition metals including Mn, Ni, Cr, Co, and Fe were studied by electron microprobe methods and UV/Vis/NIR single-crystal optical absorption spectroscopy. The first major objective was to measure and assign the various electronic absorption features. The second was to analyze quantitatively the crystal colors using the experimental spectra and the CIE 1931 color-space-chromaticity diagram. The microprobe results show that the doped gahnites have transition metal concentrations between about 0.001 and 0.1 cations per formula unit. The spectrum of colorless, nominally pure ZnAl₂O₄ displays no absorption in the visible region. Microprobe analysis of a light-blue gahnite crystal reveals small amounts of Ni and Mn. The UV/Vis/NIR spectrum does not indicate any dd-electronic transitions relating to Mn. All absorption features also cannot be fully interpreted using Tanabe-Sugano diagrams for Ni²⁺ in either octahedral or tetrahedral coordination. A series of seven slightly different colored gahnites with differing concentrations of Cr³⁺ and most also containing smaller amounts of Ni was investigated. The spectrum of a one pink crystal shows two intense absorption features in the visible region. They are assigned to spin-allowed $^4A_g \rightarrow ^4T_{2g}$ (F) and $^4A_g \rightarrow ^4T_{1g}$ (F) transitions of $^{3+}$Cr. Other spectra display additional weak bands and lines that are most probably spin-forbidden dd-transitions of Ni²⁺. These gahnites with Ni and Cr show varying purple colorations depending on the concentrations of both metals. Two more deeply blue gahnites contain Co²⁺ as demonstrated by their UV/Vis spectra but not by microprobe analysis. Two intense absorption features at ~7440 and ~16850 cm⁻¹ are observed and assigned to the spin-allowed transitions $^4A_g \rightarrow ^4T_{1g}$ (F) and $^4A_g \rightarrow ^4T_{1g}$ (P) of Co²⁺, respectively. Complex absorption fine structure, caused by spin-orbit and/or vibronic interactions, is also observed. Three different gahnites with yellow to orange colorations contain measurable Mn. Their spectra are similar in appearance and display several weak $^{4+}$Mn²⁺ spin-forbidden transitions located above 20000 cm⁻¹. The spectra of two green gahnites show several Fe spin-forbidden electronic transitions arising from single, isolated $^{4+}$Fe²⁺ and $^{4+}$Fe³⁺ cations between 10000 and 25000 cm⁻¹. The intensities of some of the $^{4+}$Fe³⁺-related bands can be increased through exchange-coupled interactions with next nearest $^{4+}$Fe²⁺ neighbors. The colors of various doped gahnites and the end-member galaxite are analyzed using their single-crystal absorption spectra in the visible region. Their dominant wavelength, λ_d, and hue saturation, ρ, values are given on the CIE 1931 color-space-chromaticity diagram and are discussed. The Hex colors of all crystals are calculated and can be compared to those of the studied crystals.

Keywords: Spinel, gahnite, microprobe analysis, optical absorption spectroscopy, electronic d-d transitions, crystal color, transition metal

INTRODUCTION

The oxide spinel group of phases, both natural and synthetic, consists of a large number of different end-member species. In addition, solid solution is often extensive and a great variety of compositionally intermediate crystals can be formed. Spinel can incorporate all the different metals of the first transition series, including in more than one oxidation state for some elements. For these reasons, such crystals can display a very wide range of colors. Indeed, spinels are often sold as gemstones and they are used as paint pigments. In terms of technology, MgAl₂O₄ crystals doped with metal ions such as Ti, Mn, and Ni are used in lasers. A multitude of different types of investigations, both basic and applied in scope, have been made on the many diverse species and compositions of spinel.

Spinel is cubic with space group $Fd\bar{3}m$ and $Z = 8$. It has the general formula $A_1B_1B_2O_4$, where A is a divalent cation and B a trivalent one. Normal and inverse spinels exist with $x = 0$ for the former and $x = 1$ for the latter. The crystal structure is based on a face-centered cubic-close-packed arrangement of oxygen anions, wherein 1/2 of the octahedrally and 1/8 of the tetrahedrally coordinated voids are occupied by cations. The cations lie on crystallographic special positions and are, thus, fixed by symmetry.