Genesis of Mesozoic high-Mg dioritic rocks from the eastern North China Craton: Implications for the evolution of continental lithosphere

JUN GUO1,2†, XIAO-LONG HUANG1,2,*, PENG-LI HE1, LIN-LI CHEN1, and JUN-WEI ZHONG3

1State Key Laboratory of Isotope Geochemistry, CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
2Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
3Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650000, Yunnan, China

ABSTRACT

Pre-Cenozoic high-Mg andesites (HMAs) are mostly present in continental interiors, but their genetic relationship with continental lithosphere evolution remains unclear because of uncertainties of their mantle source, magmatic processes, and physicochemical conditions of formation. Early Cretaceous high-Mg dioritic rocks (HMDs, analogs of HMAs) of the Jinling complex in the Luxi area are typical intra-plate intrusions of the eastern North China Craton (NCC) and can be subdivided into two groups (Group-I and -II) on the basis of their petrographic and geochemical features. Group-I HMDs show low SiO2 contents (52.47–56.10 wt%) and Sr/Y (34.5–39.6) and (La/Yb)N (10.3–13.6) ratios but high contents of MgO (7.86–9.13 wt%), Y (18.3–20.3 ppm), Yb (1.43–1.47 ppm), and compatible elements (Cr = 407–585 ppm; Ni = 117–216 ppm), classifying as sanukitic rocks. Group-II HMDs are characterized by high SiO2 contents (63.81–64.87 wt%) and Sr/Y (47.1–63.4) and (La/Yb)N (16.1–17.5) ratios with low MgO (2.90–3.08 wt%), Y (0.88–1.04 ppm), Yb (0.88–1.04 ppm), and compatible elements (Cr = 201–213 ppm; Ni = 55–57 ppm) contents, belonging to adakitic rocks. Group-I and Group-II HMDs of the Jinling complex are closely related in spatial and temporal distribution, and all have enriched Sr-Nd isotopic compositions and arc-like trace element patterns with abundant hydrous minerals. Therefore, the Jinling HMDs should share a common source of ancient sub-continental lithospheric mantle that was metasomatized by aqueous fluids derived from the subducted Paleo-Pacific slab. The Jinling HMDs were not formed from interaction between slab-derived melts and mantle-wedge peridotites but were instead derived from partial melting of hydrous mantle peridotites in the continental interior of the eastern NCC. The distinctly different petrography, geochemistry, and mineralogy of the two groups of rocks resulted mainly from differing magmatic processes at crustal depths. Thus, Pre-Cenozoic intra-plate HMDs/HMAs are genetically distinct from Cenozoic HMAs that were mostly present in arc settings and generally represent juvenile crust growth. In a way, Archean tonalitic-trondhjemitic-granodioritic rocks (TTG) and sanukitoids, geochemically similar to HMAs/HMDs, could also be derived from interaction between slab-derived melts and mantle-wedge peridotites in arc settings or partial melting of hydrous mantle peridotites in continental interiors, and thus might not always be related with continental crustal growth and the onset of plate subduction.

Keywords: High-Mg dioritic rocks, magmatic processes, fluid metasomatism, sub-continental lithospheric mantle, North China Craton

INTRODUCTION

The bulk composition of continental crust has been estimated to be 57–64 wt% SiO2, 4.4–6.7 wt% Na2O+K2O, and 3.2–4.7 wt% MgO and to have Mg# [= 100 × Mg2+/ (Mg2+ + Fe2+)] of 45–55 (e.g., Rudnick 1995; Rudnick and Gao 2014). Cenozoic high-magnesium andesites (HMAs) have similar compositional characteristics to the bulk crust (e.g., Kelemen 1995). Despite their small magmatic volumes in modern subduction zones, Cenozoic HMAs have attracted considerable research attention during the past three decades because they can provide insights into the geodynamics of continental growth and the onset of plate tectonics, and because of their compositional similarities to Archean TTG and sanukitoids (e.g., Shirey and Hanson 1984; Kelemen 1995; Rudnick 1995; Tatsumi 2001, 2008; Martin et al. 2005; Wang et al. 2020a; Xu et al. 2020). Cenozoic HMAs can be categorized into four sub-types on the basis of their petrographic and geochemical characteristics, i.e., adakitic, bajaitic, sanukitic, and boninitic HMAs (e.g., Yogodzinski et al. 1995; Kamei et al. 2004; Tang and Wang 2010; Wang et al. 2020a). These sub-types are generated through different mechanisms and have distinct implications for slab-mantle interactions at modern convergent plate margins. Cenozoic HMAs occur mainly in oceanic subduction zones and subordinately in continental collision zones away from intracontinental settings (e.g., Defant and Drummond 1990; Yogodzinski et al. 1994, 1995; Tatsumi 2001, 2008; Wang et al. 2020a; Xu et al. 2020). However, Pre-Cenozoic HMAs, including Archean TTG and sanukitoids, have also been reported

* E-mail: xlhuang@gig.ac.cn. Orcid 0000-0002-3138-986X
† Orcid 0000-0001-8392-2948