Vapor-phases as Cu transport agents for the shear-zone-hosted mineralization system: A perspective from H-O-S-Cu isotopes

YUN ZHAO^{1,2,3,*,†}, CHUNJI XUE^{1,4,*}, SHENG-AO LIU¹, RYAN MATHUR⁵, XIAOBO ZHAO¹, REIMAR SELTMANN⁶, JIANGANG JIAO², YONGSEN HUANG⁷, AND XUEFENG WANG⁸

¹State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
²Key Laboratory of Western China's Mineral Resources and Geological Engineering. Ministry of Education, Chang'an University, Xi'an 710054, China
³Key Laboratory of Critical Minerals Metallogeny in University of Yunnan Province, Yunnan University, Kunming 650500, China
⁴The National 305 Project Office of Xinjiang, Urumqi 830000, China
⁵Department of Geology, Juniata College, Huntingdon, Pennsylvania 16652, U.S.A.
⁶Center for Russian and Central Eurasian Mineral Studies, Natural History Museum, Cromwell Road, London SW7 5BD, U.K.
⁷106 Geological Brigade of Sichuan Bureau of Geology and Mineral Resources, Chengdu 611130, China
⁸Yantai Geological Survey Center of Coastal Zone, China Geological Survey, Yantai 264004, China

Abstract

Elucidating metal transport agents is the key to understanding the genesis of deposits and tracking the locations of concealed orebodies. Here, we integrate H-O-S-Cu isotopic data from the shear-zonehosted Lingyun Cu deposit, China, as a means to fingerprint metal transport agents. Sulfide mineralization can be divided into early and late stages, which consist of chalcopyrite + bornite + quartz veins and chalcopyrite + bornite + ankerite veinlets, respectively. Both $\delta^{18}O_{fluid}$ and δD values of fluid inclusions hosted by quartz ($\delta^{18}O_{\text{finial}}$: 0.5% to 9.9%, δD : -103.9% to -60.1%) and $\delta^{65}Cu$ values of sulfides (-1.85% to +0.39%) from the early stage progressively decrease from the southeastern to northwestern portions of the Lingyun deposit, whereas sulfide δ^{34} S simultaneously shifts toward heavier values (-14.4‰ to 5.0‰). The δ^{34} S and δ^{65} Cu values of sulfides from the late stage have restricted ranges from -11.2% to -9.3% and -0.30% to 0.05%, respectively. The possibilities of meteoric water addition, water-rock interaction, inter-mineral Cu partitioning, diffusion, and oxidation could be ruled out as reasons for having caused systematic H-O-S-Cu isotope variations. Vapor-liquid separation resulted in preferential incorporation of light Cu, H, and O isotopes into the vapor phase. The decrease in oxygen fugacity in the fluids resulted in a shift toward heavier δ^{34} S values as fluid flowed outward. Vapor-phases are the dominant transport agents for Cu in the Lingyun deposit, which may be widely applicable to shear-zone-hosted deposits. The direction of progressively increasing δ^{65} Cu, δD , and δ^{18} O values and decreasing δ^{34} S values allows identification of potential locations of concealed orebodies.

Keywords: H-O-S-Cu isotopes, Cu transport agent, shear-zone-hosted deposit, Tianshan; Isotopes, Minerals, and Petrology: Honoring John Valley