Influence of crystallographic anisotropy on the electrical conductivity of apatite at high temperatures and high pressures

ZIMING HU1,2, LIDONG DAI1,*†, HAIYING HU1,*†, WENQING SUN1, MENGQI WANG1,2, CHENXIN JING1,2, CHUANYU YIN1,2, SONG LUO1,2, AND JINHUA LAI1,2

1Key Laboratory of High-Temperature and High-Pressure Study of the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
2University of Chinese Academy of Sciences, Beijing, 100049, China

Abstract

The electrical conductivity of apatite single crystals along three main crystalline directions was measured in situ using a YJ-3000t multi-anvil apparatus and a combined system consisting of the impedance/gain-phase analyzer (Solartron 1260) and dielectric interface (Solartron 1296) at 973–1373 K and 1.0–3.0 GPa. The obtained results indicate that the relationship between the electrical conductivity and temperature conforms to the Arrhenius relation. At 2.0 GPa, the electrical conductivity of apatite with relatively high activation enthalpies of 1.92–2.24 eV shows a significant anisotropy with an extremely high anisotropic degree (∆ = ∼8–16) value. For a given [001] crystallographic orientation, the electrical conductivity of apatite slightly decreases with increasing pressure, and its corresponding activation energy and activation volume of charge carriers are 2.05 ± 0.06 eV and 9.31 ± 0.98 cm³/mol, respectively. All of these observed anomalously high activation enthalpy and positive activation volume values suggest that the main conduction mechanism is related to the monovalent fluorine anion at high temperature and high pressure. Furthermore, three representative petrological average schemes, including the parallel, Hashin-Shtrikman upper bound, and average models were selected to establish the functional relation for the electrical conductivity of the phlogopite-apatite-peridotite rock system along with the volume percentages of apatite ranging from 1 to 10% at 973–1373 K and 2.0 GPa. For a typical Hashin-Shtrikman upper bound model, the electrical conductivity-depth profile for peridotite containing the 10% volume percentage of apatite was successfully constructed in conjunction with our acquired anisotropic electrical conductivity results and available temperature gradient data (11.6 and 27.6 K/km) at depths of 20–90 km. Although the presence of apatite in peridotite cannot explain the high-conductivity anomalies in western Junggar of Xinjiang autonomous region, it may provide a reasonable constraint on those of representative apatite-rich areas.

Keywords: Apatite, electrical conductivity, anisotropy, fluorine conduction, high pressure; Physics and Chemistry of Earth’s Deep Mantle and Core

Introduction

Previous field geophysical magnetotelluric (MT) results revealed that there existed phenomena of widespread high-conductivity anomalies and high electrical conductivity anisotropy in many areas of the lithosphere and asthenosphere (Hamilton et al. 2006; Naif et al. 2013; Selway 2014, 2015, 2019; Selway and O’Donnell 2019; Selway et al. 2019; Förster and Selway 2021; Özaydın and Selway 2022). For a typical geotectonic unit in western Junggar of Xinjiang autonomous region, the remnants of subducted oceanic slab with the anomalous high-conductivity range of ~10⁻² to 1 S/m have been reported on the basis of recent MT data (Xu et al. 2016, 2020; Zhang et al. 2017; Liu et al. 2019a). In situ electrical conductivity measurements of relevant minerals and rocks under high-temperature and high-pressure conditions can be applied to reasonably interpret the observed MT results. As pointed out by Xu et al. (2020), the high-conductivity anomalies in the western Junggar of Xinjiang autonomous region can be caused by the presence of volatile-bearing metasomatic minerals (VMMs), such as apatite, phlogopite, lawsonite and amphibole in the residual oceanic plate.

Generally, the volatile-bearing metasomatic minerals are the ordinary constituent materials for mantle magma, which also exist as a disseminated type in the mantle peridotite. The electrical properties of VMMs at high temperature and high pressure have attracted great attention in recent years (Manthilake et al. 2015, 2016, 2021a, 2021b; Li et al. 2016, 2017; Hu et al. 2018; Liu et al. 2019b; Peng et al. 2022). For a representative water-bearing and fluorine-bearing silicate mineral, Li et al. (2016) investigated the electrical conductivity of phlogopite single crystals along three main crystalline directions in the temperature range of 473–1173 K and at the pressure of 1.0 GPa with an end-loaded piston cylinder press. These observations anomalously high conductivity and significant electrical conductivity anisotropy of phlogopite, which can account for the regional high-conductivity anomalies in the continental upper mantle. As far as a typically...