Correlation between Si-Al disorder and hydrogen-bonding distance variation in ussingite (Na$_2$AlSi$_3$O$_8$OH) revealed by one- and two-dimensional multi-nuclear NMR and first-principles calculation

XIANYU XUE1,* AND MASAMI KANZAKI1

1Institute for Planetary Materials, Okayama University, Yamada 827, Misasa, Tottori, Japan

ABSTRACT

Ussingite (Na$_2$AlSi$_3$O$_8$OH) is a mineral with a unique interrupted framework structure and strong hydrogen bonding. It contains 4-, 6-, and 8-membered tetrahedral rings resembling feldspars, but, unlike the latter, is partially depolymerized. There are four crystallographically distinct tetrahedral (T) sites, two of which (T1, T2) are Q4 [i.e., having 4 next nearest neighbor (NNN) T sites], and the other two (T3, T4) are Q3 [i.e., having 3 NNN T sites], each with NNN (in brackets) of T1(1T2, 1T3, 2T4), T2(1T1, 2T3, 1T4), T3(1T1, 2T2), and T4(2T1, 1T2). There is one unique OH site in the T4-O8-H···O2-T3 configuration, where O8 and O2 are nonbridging O atoms (NBO). In the ordered structure, T1 is fully occupied by Al, and the other three T sites by Si. Previous X-ray and neutron diffraction and 1H and 29Si NMR studies gave contradictory conclusions regarding Si-Al disorder. In this study, we were able to unambiguously clarify the issue via comprehensive one- and two-dimensional 1H, 29Si, 27Al, and 29Na NMR and first-principles calculation. It was revealed that there is ~3% Si-Al disorder that occurs between neighboring T1-(O)-T2 sites, such that the formation of Al-O-Al linkage and Al(Q3) are avoided. The disorder was found to result in the development of Si(Q3) sites with various NNN, including 3Al and 3Si, and neighboring OH sites having significantly shorter and longer hydrogen-bonding distances than in the ordered structure, with 1H chemical shifts near 15~16 ppm and 11 ppm, in addition to a main peak near 13.9 ppm. Good correlation was found between 1H chemical shift, hydrogen-bonding (O-H, H···O, and O···O) distances, and Si-O distances in the Si-O-H···O-Si linkage. This suggests that Si-Al disorder is correlated with variation in hydrogen-bonding distances via through-bond transmission of bond valence variations. This could be a universal phenomenon also applicable to other hydrous minerals. The revelation of preferential partition of Al in Q4 over Q3 sites to avoid the formation of Al-OH and Al-NBO provides insight into their behavior in other partially depolymerized hydrous aluminosilicate systems, such as glasses and melts.

Keywords: Si-Al disorder, hydrogen bonding, NMR, first-principles calculation, ussingite, depolymerized, hydrous

INTRODUCTION

Ussingite (Na$_2$AlSi$_3$O$_8$OH) is a mineral characterized by a unique interrupted framework structure and strong hydrogen bonding (Fig. 1). It has been found in limited localities in the world, as a secondary mineral in pegmatite in the Lovozero and Khibina massifs of the Kola Peninsula, Russia, in the Ilmaaussaq intrusion, Greenland, and in sodalite xenoliths in an alkalic gabbro-syenite complex in Mont Saint-Hilaire, Canada. Its chemical composition has been reported to be close to the ideal chemical formula (cf. Anthony et al. https://handbookofmineralogy.org/).

The crystal structure of ussingite has been determined by single-crystal X-ray diffraction (XRD) (Rossi et al. 1974) and powder neutron diffraction (Williams and Weller 2012). It has a space group P_1T, $Z = 2$ with lattice parameters: $a = 7.2474(1)$ Å, $b = 7.6813(1)$ Å, $c = 8.6432(1)$ Å, $a = 90.835(1)^\circ$, $\beta = 99.771(1)^\circ$, $\gamma = 122.581(1)^\circ$ at 4 K (Williams and Weller 2012). The structure contains 4-, 6-, and 8-membered tetrahedral rings resembling feldspars, but, unlike the latter, is partially depolymerized. There are nine crystallographically distinct oxygen sites, seven of which are bridging O atoms that each link two tetrahedral (T) cations, and the remaining two (O2, O8) are nonbridging O atoms (NBO) that each bond to one T cation and one H via O-H or H···O bond. The bulk NBO/T (NBO per tetrahedral cation), a parameter describing the degree of depolymerization of the system, is 0.5. There are four T sites, two of which (T1, T2) are Q4 [i.e., having four next nearest neighbor (NNN) T sites], and the other two (T3, T4) are Q3 [i.e., having three NNN T sites]. Their NNN environments (in brackets) are T1(1T2,1T3,2T4), T2(1T1,2T3,1T4), T3(1T1,2T2), T4(2T1,1T2), so that the T3/T4 sites are not NBO to one another, but are each surrounded by three T1/T2 sites. There is only one unique H site located in the T4-O8-H···O2-T3 linkage, with O8-H, H···O2, and O···O distances of 1.070(8), 1.412(7), and 2.481(5) Å at 4 K (Williams and Weller 2012).

The crystal structure of ussingite from X-ray diffraction (Rossi et al. 1974) did not show any Si-Al disorder. In the ordered structure, T1 is occupied by Al, and the other T sites by Si. The possibility of Si-Al disorder was suggested by Ribbe (1974), who noted that the exchange of 5% of Al in the T1 site with Si in the T3 site resulted in a better fit to an empirical equation for T-O bond distances. Oglesby and Stebbins (2000) reported 29Si