Waipouaite, Ca₃(V⁴⁺_{4.5}V⁵⁺_{0.5})O₉[(Si₂O₅(OH)₂][Si₃O_{7.5}(OH)_{1.5}]·11H₂O, a new polyoxovanadate mineral from the Aranga Quarry, New Zealand

PETER ELLIOTT^{1,2,*} AND ANTHONY R. KAMPF^{3,†}

¹Department of Earth Sciences, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia

²South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia

³Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A.

ABSTRACT

Waipouaite, $Ca_3(V_{4,5}^{++}V_{0,5}^{++})O_9[(Si_2O_5(OH)_2)][Si_3O_{7,5}(OH)_{1,5}]\cdot 11H_2O$, is a new mineral from the Aranga Quarry, Northland Region, New Zealand. It occurs in basalt as overgrowths on thompsonite-Ca and chabazite-Ca and as inclusions within calcite and okenite. It forms dark olive green to almost black prismatic crystals to 0.3 mm in length. Crystals are transparent to translucent with a vitreous luster. The Mohs hardness is ~2, and the measured density is 2.24(2) g/cm³. The new mineral is biaxial (+), with $\alpha = 1.620(5)$, $\beta = 1.622(5)$, $\gamma = 1.628(5)$ (white light). The calculated 2*V* is 60.2°. Dispersion could not be observed. The optical orientation is $Z = \mathbf{b}$. Pleochroism is *X* blue-green, *Y* olive green, *Z* olive; X > Y >> Z. Electron microprobe analyses gave the empirical formula (based on 36 O apfu) (Ca_{2.90}Na_{0.05}K_{0.04}Sr_{0.01})_{S3.00}(V⁴⁺_{4.60}V⁵⁺_{0.44})_{S5.04}(Si_{4.97}Al_{0.02})_{S4.99}O_{21.45}OH_{3.55}·H₂O_{11.00}.

Waipouaite is monoclinic, $P2_1/c$, a = 12.843(3), b = 23.589(5), c = 11.560(2) Å, $\beta = 115.54(3)^\circ$, V = 3160.0(13) Å³, and Z = 4. The eight strongest reflections in the X-ray powder diffraction pattern are $[d_{obs} \text{ in } \text{Å}(I) (hkl)]$: 11.78 (100) (020, 100), 9.54 (16) (011), 7.85 (19) (021), 6.29 (32) (031), 5.92 (31) (040), 5.22 (21) (122), 3.140 (18) (333), 2.850 (17) (180, 242). The crystal structure was refined using synchrotron single-crystal X-ray data to $R_1 = 6.85\%$ for 6594 reflections with $I \ge \sigma I$. Waipouaite is the first natural polyoxovanadosilicate and has a novel structure based on $[(V^{4+}, V^{5+})_5O_{17}]$ polyoxovanadate units, which are unique in natural and synthetic phases. Synthesis of polyoxovanadosilicates has proved to be a great challenge, and the discovery of waipouaite demonstrates that these compounds can form under natural conditions.

Keywords: Waipouaite, new mineral species, calcium vanadyl silicate, crystal structure, polyoxovanadate, Aranga Quarry, New Zealand, synchrotron