Znucalite, the only known zinc uranyl carbonate: Its crystal structure and environmental implications

Gwladys Steciuk¹, Juraj Majzlan², Jan Rohlíček¹, Radek Škoda³, Jiří Sejkora⁴, and Jakub Plášil^{1,*}

¹Institute of Physics of the CAS, Na Slovance 1999/2, 182 00 Prague 8, Czech Republic

²Institute of Geosciences, Friedrich-Schiller University, Burgweg 11, Jena, 07749, Germany

³Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic ⁴Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00 Prague 9-Horní Počernice, Czech Republic

ABSTRACT

Znucalite is a zinc uranyl-carbonate mineral that was until recently only partially characterized with a formula originally given as $Zn_1/2Ca(UO_2)(CO_3)(OH)_{22}$ ·4H₂O, with an unknown crystal structure and ambiguous symmetry determinations. We have reinvestigated this mineral using three-dimensional electron diffraction (3D ED) and powder X-ray diffraction and revealed for the first time its structural details. Znucalite is unambiguously monoclinic, $P2_1/m$, with a = 10.722(2) Å, b = 6.259(1) Å, c =25.355(1) Å, $\beta = 101.13(1)^\circ$, and V = 1669.54(9) Å³. The structure refinement of the 3D ED data using the dynamical approach ($R_{obs} = 0.1594$ for 3579 observed reflections and 244 parameters) provided the following structure model. Znucalite possesses a layered structure, with a $[Zn_{10}(OH)_{14}(CO_3)_2]$ double sheet (with Zn^{2+} both in octahedra and tetrahedra), which is connected to a thick interlayer that hosts U^{6+} , Ca²⁺, and H₂O molecules. The linkage between structural units and the interlayer occurs via the vertices of ZnO₄ tetrahedra protruding from the sheet. In the interlayer, differences in ordering between U and Ca take place and likely cause the difficulties encountered during the attempts to solve the structure. The refined structural formula of znucalite, Zn₁₀Ca_{0.828}[UO₂]_{0.828}[CO₃]₄(OH)_{15.312}(H₂O)_{5.484}, corresponds well to the composition obtained from the electron-microprobe analyses, $(Zn_{9.84}Al_{0.16})_{\Sigma 10.00}$ $Ca_{0.83}(UO_2)_{0.80}[(CO_3)_{3.96}(SO_4)_{0.04}]_{\Sigma4.00}(OH)_{15.42}(H_2O)_{5.48}$. Raman spectroscopy evidenced the presence of several non-equivalent CO₃ groups, as well as OH and H₂O. The U-O bond lengths obtained from the stretching frequencies of UO_2^{2+} vibrations are in line with the structural model. A discussion on the environmental importance of znucalite is appended, based on geochemical calculations with an estimate of the solubility product for this mineral.

Keywords: Znucalite, uranyl carbonate, crystal structure, 3D electron diffraction, Rietveld refinement, conditions of formation, uranium immobilization