High *P-T* phase relations of Al-bearing magnetite: Post-spinel phases as indicators for *P-T* conditions of formation of natural samples

Laura Uenver-Thiele^{1,*}, Alan B. Woodland¹, Nobuyoshi Miyajima^{2,†}, Tiziana Boffa Ballaran², Edith Alig³, and Lothar Fink³

¹Institut für Geowissenschaften, Goethe-Universität Frankfurt, Altenhöferallee 1, D-60438, Frankfurt am Main, Germany ²Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany

³Institut für Anorganische u. Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany

ABSTRACT

The phase relations of Al-bearing magnetite were investigated between 6–22 GPa and 1000–1550 °C using a multi-anvil apparatus. This study demonstrates that the spinel-structured phase persists up to ~9–10 GPa at 1100–1400 °C irrespective of the amount of hercynite (FeAl₂O₄) component present (20, 40, or 60 mol%). At ~10 GPa, the assemblage Fe₂(Al,Fe)₂O₅ + (Al,Fe)₂O₃ forms and remains stable up to 16–20 GPa and 1200–1550 °C. Fe₂(Al,Fe)₂O₅ adopts the CaFe₃O₅-type structure with the *Cmcm* space group. At 18–22 GPa and T>1300 °C the assemblage Fe₃(Fe,Al)₄O₉ + (Al,Fe)₂O₃ becomes stable. Fe₃(Fe,Al)₄O₉ is isostructural with Fe₇O₉, having the monoclinic structure of the *C2/m* space group. At T < 1300 °C, Fe₃(Fe,Al)₄O₉ + (Al,Fe)₂O₃ gives way to the assemblage of a hp-Fe(Fe,Al)₂O₄ + (Al,Fe)₂O₃. This hp-Fe(Fe,Al)₂O₄ phase is unquenchable; a defect-bearing spinel-structured phase was recovered instead, and it contained numerous lamellae parallel to {100} or {113} planes and notably less Al than the initial starting composition. While low-pressure spinel can have a complete solid solution between Fe³⁺-Al, the post-spinel phases have only very limited Al solubility, with a maximum of ~0.1 cpfu Al in hp-Fe(Fe,Al)₂O₄, ~0.3 cpfu in Fe₂(Fe,Al)₂O₅, and ~0.4 cpfu in Fe₃(Fe,Al)₄O₉, respectively. As a result, the phase relations of Fe(Fe_{0.8}Al_{0.2})₂O₄ can also be applied to bulk compositions richer in Al with the only difference being that larger amounts of an (Al,Fe)₂O₃ phase are present.

Coexisting rhombohedral-structured phases demonstrate that the binary miscibility gap established at low pressure between hematite and corundum is still valid up to 20 GPa. Since iron oxides (e.g., magnetite) with variable Al contents are found in extraterrestrial rocks or as inclusions in diamond, constraints on their high-*P*-*T*- f_{02} stability might help unravel their formation conditions.

Keywords: Magnetite, hercynite, iron oxides, Fe₄O₅, Fe₇O₉, Earth's mantle, phase relations, inclusion in diamond, shock metamorphism