A neutron diffraction study of the hydrous borate inderborite, CaMg[B₃O₃(OH)₅]₂(H₂O)₄·2H₂O

G. DIEGO GATTA^{1,*}, ENRICO CANNAÒ¹, DAVIDE COMBONI¹, TOMMASO BATTISTON¹, AND OSCAR FABELO²

¹Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, I-20133 Milano, Italy ²Institut Laue-Langevin, 71 Avenue des Martyrs, F-38000 Grenoble, France

ABSTRACT

The crystal chemistry of inderborite, a B-rich mineral (B₂O₃ ~41 wt%) with ideal formula CaMg[B₃O₃(OH)₅]₂·6H₂O or CaMg[B₃O₃(OH)₅]₂(H₂O)₄·2H₂O from the Inder Deposit, Kazakhstan, was re-investigated by a multi-methodological approach (single-crystal X-ray and neutron diffraction, electron probe micro-analysis in wavelength-dispersive mode, laser ablation multi-collector inductively mass spectrometry). The experimental findings show that the real chemical formula of inderborite from the Inder Deposit is virtually identical to the ideal one: the fraction of potential isomorphic substituents is insignificant. Boron is, therefore, the only industrially relevant element occurring in this mineral. The in situ B isotope composition of the Inder inderborite shows enrichment in the heavy ¹¹B isotope, giving a weighted mean $\delta^{11}B_{NIST951}$ of +35.15 ± 0.49 ‰ (2 σ , N = 6). Such a positive $\delta^{11}B$ value falls within the range of values in which the source of boron is ascribable to marine reservoirs rather than to terrestrial ones.

X-ray (at 293 K) and neutron (at 20 K) structure refinements confirm that the principal building block unit of the structure is a $[B_3O_3(OH)_5]^{2-}$ ring, consisting of two BO₂(OH)₂ tetrahedra (B-ion in *sp*³ electronic configuration) and one planar-triangular BO₂OH group (B-ion in *sp*² electronic configuration). In the $[B_3O_3(OH)_5]^{2-}$ ring, all the oxygen atoms that are not shared between two boron atoms are protonated. The building units share corners with the CaO₂(OH)₄(OH₂)₂ polyhedra and Mg(OH)₄(OH₂)₂ octahedra, forming hetero-polyhedral sheets parallel to (100). Subsequent hetero-polyhedral sheets are mutually connected only by H-bonding interactions, even mediated by the zeolitic ("interstitial") H₂O molecules. Ten out of 11 independent oxygen sites in the structure of inderborite are involved in H-bonds as donors or acceptors, and this reflects the pervasive effect of the H-bonding network. The role played by the complex H-bond network is expected to be substantial on the stability of the crystalline edifice, having effects within the single hetero-polyhedral sheet, between subsequent sheets, and in the bonding with the interstitial zeolitic H₂O molecules. Finally, the potential utilizations of inderborite, as a B-bearing mineral, are discussed.

Keywords: Inderborite, borates, mineral commodity, X-ray diffraction, neutron diffraction, crystal chemistry, hydrogen bonding