Compressibility and pressure-induced structural evolution of kokchetavite, hexagonal polymorph of KAlSi₃O₈, by single-crystal X-ray diffraction

ALEXANDR V. ROMANENKO^{1,*}, SERGEY V. RASHCHENKO^{1,2}, ANDREY V. KORSAKOV^{1,†}, ALEXANDER G. SOKOL^{1,‡}, AND KONSTANTIN A. KOKH¹

¹Sobolev Institute of Geology and Mineralogy SB RAS, 3 Koptyuga Avenue, 630090 Novosibirsk, Russia ²Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia

ABSTRACT

Compressibility and pressure-induced structural evolution of kokchetavite, the hexagonal polymorph of KAlSi₃O₈, has been studied up to 11.8 GPa using synchrotron single-crystal X-ray diffraction. Two phase transitions were observed at pressures of ~0.3 and 10.4 GPa. Kokchetavite-I (as-synthesized, P6/mcc) transforms into kokchetavite-II with the $P\overline{6}c2$ space group. Kokchetavite-II \rightarrow kokchetavite-III phase transition at ~10.4 GPa is accompanied by a change of symmetry to probably orthorhombic. After pressure release, kokchetavite reverts to the initial single-crystal state with P6/mcc space group. A second-order Birch-Murnaghan equation of state was calculated for phase kokchetavite-II with coefficients $V_0 = 1486(3)$ Å³, $K_0 = 59(2)$ GPa.

Keywords: Kokchetavite; synchrotron X-ray diffraction, high-pressure crystallography, KAlSi₃O₈, K-cymrite, feldspar polymorphism