Sulfur speciation in dacitic melts using X-ray absorption near-edge structure spectroscopy of the S K-edge (S-XANES): Consideration of radiation-induced changes and the implications for sulfur in natural arc systems

JACKIE M. KLEINSASSER^{1,*}, BRIAN A. KONECKE², ADAM C. SIMON^{1,†}, PAUL NORTHRUP³, ANTONIO LANZIROTTI⁴, MATTHEW NEWVILLE⁴, CAMELIA BORCA⁵, THOMAS HUTHWELKER⁵, AND FRANCOIS HOLTZ⁶

¹Department of Earth and Environmental Sciences, University of Michigan, 1100 N. University Avenue, Ann Arbor, Michigan 48108, U.S.A. ²Fathom Geophysics, LLC, 12956 Claylick Road, Newark, Ohio 43056, U.S.A.

³Stony Brook University, 255 Earth and Space Science Building, Stony Brook, New York 11794, U.S.A.

⁴University of Chicago, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, U.S.A.

⁵Swiss Light Source, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland

Institut für Mineralogie, Leibniz Universitat, Callinstrasse 3, 30167 Hannover, Germany

ABSTRACT

The synchrotron technique of micro X-ray absorption near-edge structure spectroscopy at the sulfur K-edge (S-XANES) provides a unique opportunity to measure the proportion of different oxidation states of sulfur (S) in silicate glasses. Although applied extensively in the analysis of basaltic silicate glasses, few S-XANES studies have investigated variations in S oxidation states with f_{O_2} in felsic silicate glasses. In addition, no study has systematically compared the S-XANES results obtained from the same samples at different photon flux densities to quantify the relationship between exposure time and changes in S speciation in silicate glass, as has been done for Fe and V. This study evaluates observed differences in S speciation measured in experimentally produced H₂O-saturated dacitic glasses over a range of reducing to oxidizing conditions (from $\log f_{O_2} = \Delta FMQ-0.7$ to $\Delta FMQ+3.3$; FMQ is the fayalite-magnetite-quartz mineral redox buffer) and equilibrated at 1000 °C and 300 MPa.

S-XANES spectra were collected at three different photon flux densities using three microspectroscopy beamlines. As is observed in S-XANES analyses of basaltic silicate glasses, beam-induced changes to the S⁶⁺/ Σ S are observed as a function of photon flux density and beam exposure time. Our results demonstrate that silicate glasses of dacitic composition undergo beam-induced photo-reduction in samples equilibrated at Δ FMQ > +1.75 and photo-oxidation if equilibrated at Δ FMQ < +1. The time required to observe beam-induced changes in the spectra varies as a function of flux density, and our study establishes an upper photon density limit at ~1.0 × 10¹² photons/µm². The S⁶⁺/ Σ S calculated from spectra collected below this absorbed photon limit at intermediate flux densities (~1–4 × 10⁹ photons/s per µm²) are affected by beam damage, as no conditions were found to be completely free of beam-induced changes. However, the S⁶⁺/ Σ S ratios calculated below the limit at intermediate flux densities are consistent with thermodynamic constraints, demonstrating that S⁶⁺/ Σ S ratios calculated from S-XANES spectra can be considered reliable for estimating the oxygen fugacity.

Our results carry important implications for the S budget of felsic magmas and dissolution mechanisms in evolved melts. While our results from all three flux densities show the presence of S⁴⁺ dissolved in relatively oxidized (Δ FMQ > +1.75) dacitic glass, even in the spectra exposed to the lowest photon densities, we are unable to rule out the possibility that the S⁴⁺ signal is the result of instantaneous X-ray irradiation induced beam damage using S-XANES alone. When our spectra are compared to S-XANES spectra from basaltic silicate glasses, important differences exist in the solubility of S²⁻ and S⁶⁺ between dacitic silicate melts, pointing to differences in solubility mechanisms as melt composition changes. This study highlights the need for further investigation into beam damage systematics, presence of S⁴⁺, and the solubility mechanisms of different oxidation states of S as silicate melt composition changes.

Keywords: Sulfur, S-XANES, oxidation states, sulfate, sulfide, beam damage