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Abstract
The magmatic-hydrothermal transition in granite-related, rare-metal metallogenic systems has 

received great attention as economic rare metal (including rare earth) minerals reach saturation and 
trigger mineralization at this stage. However, deciphering the details of the melt-fluid evolution process 
and the distribution behavior of rare metals remains difficult. Here, we applied tourmaline chemistry 
and B isotopes to unravel processes at the magmatic-hydrothermal transition that are responsible for 
rare-metal partitioning in the Huoshibulake (HS) and Tamu (TM) REE-Nb-mineralized intrusions in 
Southern Tianshan, SW Central Asian Orogenic Belt. Three types of tourmaline are identified in the 
plutons: (1) disseminated tourmaline in the granite, with a brown-yellow core (HS-DB) and blue-
green rim (HS-DG); (2) orbicular tourmaline, with a brown-yellow core (HS-OB and TM-OB) and 
blue-green rim (HS-OG and TM-OG); and (3) vein tourmaline (HS-V and TM-V). Compositionally, 
all these tourmalines exhibit extremely low Ca and Mg contents and are classified as schorl. The sub-
stitution processes of major-element variations are dominantly caused by (Al,)(Fe,Na)−1 exchange 
vectors. Four generations of tourmaline crystallization are established based on the petrographic, 
compositional, and B isotopes evolution of the tourmaline. First, the HS-DB crystals crystallized 
from the highly evolved residual melt, and then HS-OB and TM-OB precipitated from immiscible 
B-rich aqueous melts during the magmatic-hydrothermal transition. Subsequently, the blue-green 
overgrowths (HS-DG, HS-OG, and TM-OG) crystallized from exsolved hydrothermal fluids. Finally, 
the formation of HS-V and TM-V resulted from another melt pulse from a deeper magma chamber. 
The magmatic tourmaline exhibits a narrow range of δ11B values between –12.6 to –10.0‰, while the 
hydrothermal tourmaline shows significantly heavier and variable δ11B values ranging from –10.2 to 
–4.9‰. The fractionation of B isotopes is reproduced by Rayleigh fractionation modeling. Lower Nb 
and Sn contents in the orbicular tourmaline relative to those precipitated from the residual melt, along 
with the lack of rare-metal minerals in the orbicules, indicate that B-rich melt/fluid exsolution does 
not necessarily contribute to the rare-metal mineralization. In comparison, the veins contain abundant 
rare-metal and REE minerals in close paragenesis with fluorite, and the vein tourmaline shows high-
Nb and -Sn contents. These observations suggest that saturation of fluorite triggered the precipitation 
of rare metals, and fluorine played a critical role in rare metal concentration and mineralization. This 
study highlights the potential of tourmaline to trace the magmatic-hydrothermal transition and provide 
insights into rare-metal mineralization in the granitic systems.
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Introduction
The magmatic-hydrothermal transition, during which the 

crystallization/fractionation of orthomagmatic systems evolves 
from melt-driven (magmatic) to fluid-driven (hydrothermal) 
processes, is still poorly understood because of the transient 
timescale and widespread overprints by post-magmatic, low-
temperature alteration (Halter and Webster 2004; Michaud and 

Pichavant 2020). During the transition, complex melt-fluid inter-
actions involving silicic melts, aqueous melts, and hydrothermal 
fluids occur (Kaeter et al. 2018; Thomas et al. 2012). Although it 
has been acknowledged that rare-metal granites generally origi-
nate from a fertile source with low-degree partial melting and 
high-degree fractional crystallization contributing significantly 
to rare-metal enrichment (Ballouard et al. 2020; Linnen et al. 
2014; Sheard et al. 2012; Williams-Jones and Vasyukova 2023), 
evidence increasingly points toward the magmatic-hydrothermal 
transition as the critical step for hyper-enrichment and miner-
alization of rare metals (Ballouard et al. 2016; Carr et al. 2021; 
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