American Mineralogist, Volume 109, pages 1646–1652, 2024

Temperature and compositional dependences of H₂O solubility in majorite

DAN LIU^{1,2,3,*}, NARANGOO PUREVJAV^{3,*}, HONGZHAN FEI^{3,4}, ANTHONY C. WITHERS³, YU YE^{2,†}, AND TOMOO KATSURA^{3,‡}

¹Gemmological Institute, China University of Geosciences, Wuhan, 430074, China

²State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China ³Bayerisches Geoinstitut, University of Bayreuth, Bayreuth 95440, Germany

⁴Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou 310058, China

ABSTRACT

We systematically investigated H_2O solubility in majorite as a function of temperature from 1670–2270 K under a pressure of 20 GPa using multi-anvil techniques. The H_2O solubility in majorite decreases with increasing temperature. In addition, the H_2O content is relatively independent of the concentrations of Al_2O_3 and SiO_2 in majorite. Majorite can store more H_2O than bridgmanite in the lower mantle. Therefore, when a slab sinks into the lower mantle, hydrous melt could be produced not only by the phase transformation from ringwoodite to bridgmanite + ferropericlase near 660 km depth but also by the majorite to bridgmanite transformation over a wide range of depths from 660 km up to ~800 km, at which majorite dissolves completely in bridgmanite.

Keywords: Majorite, H₂O solubility, transition zone, hydrous melt