LETTER

Raman spectroscopy of the ilmenite-geikielite solid solution

LAURA B. BREITENFELD^{1,*}, M. DARBY DYAR^{2,3}, LEIF TOKLE⁴, AND KEVIN ROBERTSON⁵

¹Department of Earth and Environmental Science, Wesleyan University, Middletown, Connecticut 06459, U.S.A.

²Department of Astronomy, Mount Holyoke College, South Hadley, Massachusetts 01075, U.S.A.

³Planetary Science Institute, Tucson, Arizona 85719, U.S.A.

⁴Department of Earth Sciences, ETH Zürich, Zürich 8092, Switzerland

⁵Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island 02912, U.S.A.

ABSTRACT

Ilmenite ($Fe^{2+}TiO_3$) and geikielite ($MgTiO_3$) are important terrestrial minerals relevant to the geology of the Earth, the Moon, Mars, and meteorite samples. Raman spectroscopy is a powerful technique that allows for mineral cation determination for the ilmenite–geikielite solid solution. We report on a suite of nine samples within the ilmenite–geikielite solid solution and provide context for their quantitative interpretation. We compare a univariate Raman peak position model for predicting ilmenite composition with a multivariate machine learning model. The univariate model is currently recommended, though the multivariate model may become superior if the data set size is increased. This study lays the groundwork for quantifying Fe (ilmenite) and Mg (geikielite) within oxide minerals using a cheap, portable, and efficient technology like Raman spectroscopy.

Keywords: Ilmenite, geikielite, Raman spectroscopy