Thermal equation of state of Li-rich schorl up to 15.5 GPa and 673 K: Implications for lithium and boron transport in slab subduction

WEI CHEN^{1,2,3}, SHANRONG ZHANG^{1,2}, MENGZENG WU^{1,2}, QIFA ZHONG^{1,2}, SHIJIE HUANG^{1,2}, KAI WANG^{1,2}, WEI ZHAO^{1,2}, JINGUI XU^{1,*}, DAWEI FAN^{1,†}, AND WENGE ZHOU¹

¹Key Laboratory of High-Temperature and High-Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550081, China

> ²University of Chinese Academy of Sciences, Beijing 100049, China ³Guizhou Polytechnic of Construction, Guiyang, Guizhou 551400, China

ABSTRACT

The thermal equation of state (EoS) of a natural schorl has been determined at high temperatures up to 673 K and high pressures up to 15.5 GPa using in situ synchrotron X-ray diffraction combined with a diamond-anvil cell. The pressure-volume (P-V) data were fitted to a third-order Birch-Murnaghan EoS with $V_0 = 1581.45 \pm 0.25$ Å³, $K_0 = 111.6 \pm 0.9$ GPa, and $K'_0 = 4.4 \pm 0.2$; additionally, when K'_0 was fixed at a value of 4, $V_0 = 1581.04 \pm 0.20$ Å³, and $K_0 = 113.6 \pm 0.3$ GPa. The V_0 (1581.45 ± 0.25 Å³) obtained by the third-order Birch-Murnaghan EoS agrees well with the V_0 (1581.45 ± 0.05 Å³) measured at ambient conditions. Furthermore, the axial compression data of schorl at room temperature were fitted to a "linearized" third-order Birch-Murnaghan EoS, and the obtained axial moduli for the *a*- and *c*-axes are $K_a = 621 \pm 9$ GPa and $K_c = 174 \pm 2$ GPa, respectively. Consequently, the axial compressibilities are $\beta_a = 1.61 \times 10^{-3}$ GPa⁻¹ and $\beta_c = 5.75 \times 10^{-3}$ GPa⁻¹ with an anisotropic ratio of $\beta_a;\beta_c = 0.28:1.00$, indicating axial compression anisotropy. In addition, the compositional effect on the axial compressibilities of tournalines was discussed. Fitting our pressure-volume-temperature (P-V-T) data to a high-temperature third-order Birch-Murnaghan EoS yielded the following thermal EoS parameters: $V_0 = 1581.2 \pm 0.2$ Å³, $K_0 = 110.5 \pm 0.6$ GPa, $K'_0 = 4.6 \pm 0.2$, $(\partial K_{T}/\partial T)_P = -0.012 \pm 0.2$ 0.003 GPa K⁻¹ and $\alpha_{v0} = (2.4 \pm 0.2) \times 10^{-5}$ K⁻¹. These parameters were compared with those of previous studies on other tourmalines, and the potential factors influencing the thermal EoS parameters of tourmalines were further discussed.

Keywords: Schorl, equation of state, high pressure and high temperature, X-ray diffraction, diamond-anvil cell