
Performance of SVM model 

Prior to opting for the XGBoost method, we explored the utilization of the common-

used machine learning technique, Support Vector Machine (SVM), which yielded 

unsatisfactory results. The SVM model, trained on the "Major & Trace" subset, 

employed a radial basis function (RBF) as the kernel function. Its workflow mirrored 

that of the XGBoost model presented in the main text (Figure 3). Similarly, a 5-fold 

cross-validation strategy and grid search techniques were employed for parameter 

optimization and overfitting avoidance. The optimal SVM model achieved an accuracy 

of 0.690, an F1 score of 0.781, and an AUC value of 0.629 on the test set. It is 

noteworthy that a significant portion of "Unmineralized" data were erroneously 

classified as "Mineralized," as evident from the confusion matrix (Figure S1). In 

comparison to the performance of the XGBoost model M-T-1 (Accuracy = 0.992, F1 

score = 0.993, AUC = 0.991), the disparity is substantial. 

Figure S1. The confusion matrix of model SVM-1. 
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XGBoost model for deposit type classification 

In order to provide a more comprehensive response to the query raised by Reviewer 1 

regarding the compositional disparities of apatites from different deposit types, we have 

preliminarily trained a classification model to differentiate between apatite from 

various deposit types. Initially, we employed the "Major & Trace" subset, where each 

data point was assigned a corresponding deposit type label, encompassing the following 

categories: "Unmineralized," "Porphyry," "IOA," "Skarn," "Carbonatite," "IOCG," 

"Orogenic Au," "Orogenic Ni-Cu," and "Epithermal Au-Ag." It is noteworthy that due 

to limited data availability, apatite from epithermal Au-Ag deposit were excluded from 

this analysis. 

Following the standardized workflow outlined in Figure 3, we identified the optimal 

model, denoted as M-T-DC-1, and applied it to the test set. The result is shown by the 

confusion matrix (Figure S2). revealing an impressive accuracy of 0.955 and an F1 

score of 0.913. These metrics underscore the commendable performance of this model 

in distinguishing between different deposit types of apatites. Furthermore, an analysis 

of the relative importance rank yielded a list of the top ten influential features, namely 

Sm, Pr, CaO, Th, Zr, V/Y, Sr/Y, Rb, Cl, and F. It is noteworthy that Sm and Pr cannot 

be ruled out as potentially influenced by data accuracy; however, the remaining features 

bear a striking resemblance to the crucial determinants found in the mineralization 

discrimination model. 

American Mineralogist: August 2024 Online Materials AM-24-89115 
Zheng et al.: ML models of apatite for determining mineralization 



 

Figure S2. The confusion matrix of model M-T-DC-1; 0-Carbonatite; 1- IOA; 2-IOCG; 

3- Orogenic Au; 4-Orogenic Ni-Cu; 5- Porphyry; 6-Skarn; 7-Unmineralized. 

 

Figure S3. Relative Importance rank of model M-T-DC-1. 
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XGBoost model for identifying fertile magmatic and barren apatite 

he primary objective of our study is to distinguish between fertile and barren apatite; 

therefore, we do not make a specific differentiation between fertile magmatic apatite 

and fertile hydrothermal apatite, although hydrothermal and magmatic apatites often 

exhibit significant geochemical differences. However, in response to the comments of 

Reviewer 2, in order to illustrate the differences of these two types of apatite in their 

contributions to determine mineralization potential, we excluded the data points of 

fertile hydrothermal apatite from the "Major & Trace" subset and retrained the model, 

denoted as M-T-MB-1. This model continued to demonstrate robust predictive 

performance (Accuracy = 0.978, F1-score = 0.976, Figure S4a). The feature importance 

rank (Figure S4b) revealed a striking similarity to model M-T-1, with Rb, Cl, Eu, Sr/Y, 

and Ce/Ce* appearing in the top 10 ranked features in both models, indicating the 

importance of these features for discriminating mineralization in both types of apatite. 

On the other hand, some features such as SO3, Cl/F, V/Y, and certain REE elements 

displayed significant differences in their importance weights between the two models. 

This discrepancy may signify distinctions in the ability of magmatic and hydrothermal 

apatites to discriminate mineralization, aligning with observations by Bouzari et al. 

(2016) that altered apatites tend to exhibit depletion in S, Cl, F, and REE content. 
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Figure S4. (a) The confusion matrix of model M-T-MB-1; (b) Relative Importance 

rank of model M-T-MB-1. 
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