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Supplementary materials 

 

Analytical methods 

Apatite, amphibole, and plagioclase analyses were porformed using an electron 

microprobe (JXA-8230) at the State Key Laboratory of Continental Dynamics, 

Northwest University, China. Samples were re-polished prior to electron probe 

microanalysis (EPMA) to remove any compositional modification induced by 

SEM electron-beam exposure, and subsequently carbon coated along with 

secondary standards to avoid variable light element X-ray attenuation. The 

instrument was operated at an accelerating voltage of 15 kV, beam current of 10 

nA and beam diameter of 1 μm. Where possible, apatite crystals were analysed 

with the c-axis parallel to the plane of the mount. This routine limits the potential 

for time dependent variability in halogen X-ray counts during analysis (Stock et 

al., 2016, 2018), while maintaining reasonable precision for low-concentration 

elements (i.e., Cl). Count times were 20–30s for major elements and 30–90s for 

minor elements (120s for Cl and SO2 in apatite). Natural minerals and synthetic 

oxides were used as standards, including andradite for Si and Ca, rutile for Ti, 

corundum for Al, hematite for Fe, eskolaite for Cr, rhodonite for Mn, bunsenite 

for Ni, periclase for Mg, albite for Na, and K-feldspar for K. Matrix corrections 

were performed using the ZAF correction program supplied by the instrument 

manufacturer. 
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Rhyolite-MELTS fractionation modelling 

Isobaric fractional crystallisation models were run using Rhyolite-MELTS 

(Gualda et al., 2012) to constrain the conditions of magma storage. We used the 

melt composition from partial melting experiments on a synthetic as the starting 

composition for our Rhyolite-MELTS models (melt C-3136 of Qian and Hermann, 

2013), as distinguished by the similar partial melting condition with the lower 

crust of Sanjiang metallgenic belt. 
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Supplementary Figures 

 

 

Supplementary Figure 1. Discrimination diagrams for Ore-forming and barren 

porphyries in the Sanjiang metallgenic belt. a, La/Yb ratios vs SiO2 contents. b, 

Dy/Yb ratios vs SiO2 contents. c, La/Yb ratios vs SiO2 contents. d, Mg# vs SiO2 

contents. The red dashed lines in a and b represents the mafic rock fractionation 

modeling by Chang and and Audétat (2023). The adakite and arc rocks fields are 

according to Defant and Drummond (1990). Fields indicating mantle melt, 

adakites related to slab melting and lower-crustal melting are from Condie (2005), 

Wang et al. (2006) and Zheng et al. (2012). 
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Supplementary Figure 2. Variation of a, (87Sr/86Sr)i vs εNd(t) and b, initial εHf(t) 

isotope values vs zircon U–Pb ages. The field for western Yangtze amphibolite 

xenoliths is from Deng et al. (1998), Zhao et al. (2004) and Zhou et al. (2017). 

CHUR, chondrite uniform reservoir; DM, depleted mantle. The values used for 

constructing the depleted mantle (DM) and crustal evolution reference lines are 

from Griffin et al. (2000, 2002). The light gray fields represent episodes of major 

juvenile crustal growth in the Yangtze craton (Sun et al., 2009). Neoproterozoic 

amphibolite xenoliths in the Liuhe area (Hou et al., 2017; Zhou et al., 2017) 
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Supplementary Figure 3. (a, c, e) Photomicrograph and (b, d, f) backscattered 

electron images of apatites. The red spots show the positions of electron probe 

microanalysis (EPMA). All analyses of microphenocryst cores and rims are 

indistinguishable and show no evidence of re-equilibration with a 

volatile-saturated melt. 
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Supplementary Figure 4. a and b, Classification of amphibole (Leake et al., 

1997). c, Ternary space of volatile compositions of apatites. d, Composition of 

feldspars in the An–Ab–Or ternary diagram (Smith, 1974). The representative 

ternary graph on the upper right illustrates theoretical apatite compositional 

trajectories for different crystallization scenarios. Apatite crystallization begins at 

the black point (see discussion of input parameters in the text). The continuous 

lines show apatite compositional evolution during H2O-undersaturation fractional 

crystallization with Dc/m Cl ≈ 0.6 (grey continuous line) and Dc/m Cl ≈ 0.9 

(black continuous line). The red lines show apatite compositional evolution 

during H2O-saturation fractional crystallization under isobaric condition (0 wt% 

H2O loss; red continuous line) and polybaric condition (0.18 wt% H2O loss; red 

dotted line), after 40% crystallization under H2O-undersaturated condition. 

Amphiboles and apatites are from ore-forming and barren adakite-like porphyries 

in Sanjiang metallogenic belt. 
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Supplementary Figure 5. Box and whisker plots of comparison of different 

barometer results. The dots represent the results calculated by amphibole-only 

barometer (Ridolfi and Renzulli, 2012), and the squares represent the results 

calculated by amphibole–plagioclase barometer (Anderson et al., 2008). Boxes 

show first to third quartile range with bars showing extremes of data (excluding 

any outliers). Long and short lines in box show square and mean value, 

respectively. The points outside boxes represent their extremum values. 
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Supplementary Figure 6. Box and whisker plots of comparison of different 

hygrometer results. The dots represent the results calculated by amphibole-only 

hygrometer (Ridolfi and Renzulli, 2012), and the squares represent the results 

calculated by plagioclase–liquid hygrometer (Putirka et al., 2008). The box and 

whisker meanings are the same as those in Supplementary Figure 5. 
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