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Figure S: Cristales, distribution of crystals lengths. MEAN SIZE= 5.35

ALPHA= 1.523
BETA™Z= 0.376

Crystals Transversal Size Distribution
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Figure 7: Cristales, distribution of crystals transversal sizes.

Both of the above distributions pass the Kolmogorov-Smirnov test for lognormal
shape (the red curves) at the > 10% level, the most significant level in the
tables.
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Figure 5b. Lognormal shape for illite crystal thicknesses from Red Mountain, Colorado. Alpha = 2.24, and beta’2 =

0.32.
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for explanation. for sample 1901.
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Fig. 2. Examples of inorganic
crystals formed by CPA. (A) Nano-
particles of anatase (TiO,) with
perfect alignment after apparent
attachment event with the ¢ axis
oriented along the long dimension
of the aggregate (116). (B and C)
Sequential in situ images showing
oriented attachment of ferrihydrite
with creation of an edge dislocation
(yellow lines) and resulting tilt of
lattice planes above and below the
edge dislocation (red lines) (27, 30).
(D to F) TiO2 nanocrystals showing
defects incorporated through CPA,
including (D) low-angle tilt bounda-
ries, (E) screw dislocations, and (F)
twin planes. In (E), the variations in
contrast and slight shift in lattice
fringe clarity and alignment indicate
incorporation of defects. The blue
lines highlight the orientation and
shift in lattice fringe alignment to
either side of the region that
contains the dislocations; the
bright-dark contrast is consistent
with a dislocation having a screw
component. (G) Branched nanowire
of rutile (TiO2), where each branch occurs on a set of twin boundaries (inset)
(60). (H) Single-crystal honeycomb superlattice formed through oriented
attachment of PbSe nanocrystals in an octahedral symmetry. The equilateral
triangle shows the long-range ordering of the structure, and the inset shows
the relationship of the crystalline axes with the superlattice pattern (39)
(1) Cryo-TEM micrograph of a single zeolite nanoparticle (117). (J) Atomic
force micrograph of a zeolite surface showing that its growth proceeds by

attachment of silica nanoparticles (28). (K) Calcium phosphate prenucleation
complexes aggregating to form amorphous calcium phosphate nanoparti-
cles. (Inset) Amorphous calcium phosphate nanoparticle is replaced by out-
growths of calcium-deficient octacalcium phosphate (5). (L) Magnetite crystal
growing through the accretion of disordered ferrihydrite-like nanoparticles
(57). (M) Goethite mesocrystal formed by the assembly of nanocrystals shows
lattice fringes that correspond to (021) planes (62).
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FIGURE 2. Changes in the shapes of particle size distributions as
the rover neared Endurance Crater rim (upper) and Victoria Crater rim
(lower), showing a change from the universal steady-state Ostwald-
shaped reduced PSDs (upper) to transitional PSDs (lower). The original
PSD data comes from Royer et al. (2008).
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FIGURE 3. The two best examples of lognormal PSDs from Victoria
Crater rim. The other four samples in this data set skew to the right, and
pass the Kolmogorov-Smirnov statistical test for log normality: sol 1124
from 1 to 5%, sol 1071 from 5 to 10%, and sols 1113 and 1139 (and the
two sols shown above) to the >10% level of confidence, the highest level
in the tables. The original PSD data comes from Royer et al. (2008).
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sediments (filled circles), and tributary bed sediments (filled triangles).
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Summary of crystal growth mechanisms and their characteristics

System Growth Mechanism CSD Shape Comments
Open Nucleation and growth with  Asymptotic. B? increases exponentially with
constant or accelerating increase in a.
nucleation rate.
Nucleation and growth with Lognormal. B? increases linearly with
decaying nucleation rate. increase in o.
Surface-controlled growth. Lognormal. B? increases linearly with
increase in o.
Supply-controlled growth. Preserves shape of previous B? remains constant with

Closed

CSD.

Ostwald ripening (supply-con- CSD becomes more sym-
trolled). metrical with increasing per-
centage of ripening, becomes
negatively skewed, and even-
tually approaches universal
steady-state reduced profile.
Random ripening (supply-con- Preserves shape of previous
trolled}. Also termed non- CSD.
Ostwald or kinetic ripening.

Agglomeration. Can be pseudo-lognormal or
multimodal, or have other

shapes.

increase in o; therefore,
steady-state reduced profiles.

Distribution maximum moves
to the right of theoretical log-
normal curve, Generally, B!
decreases with increase in a.
Universal steady-state profile
may not be reached.

A large amount of material
passes through solution fora
small increase in mean size.
32 remains constant with
increase in a; therefore
steady-state reduced profiles.

Very little material need pass
through solution for a large
increase in mean size. If most
of the crystals are involved, B2
may decrease; otherwise it
may 1mcrease.
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Fig. 1. Particle size data from the literature (points), with superimposed theoretical lognormal curves
calculated from these data (solid lines).
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Equation 8:

Supply-controlled growth in the open system.—One can imagine an open system in which
the rate of crystal growth is controlled by the rate of nutrient supply rather than by the
rate at which the crystal surface can grow in an infinite reservoir of nutrients. For
example, the supply may be slowed by diffusion or by the rate of dissolution of an
unstable phase that is a nutrient source, or crystals may grow so large that supply can not
keep up with the exponentially increasing demand for nutrients required by LPE growth.
This situation is simulated in GALOPER by specifying the total increase in volume that
1001 crystals are permitted (2AV,) during each cycle of eq (5). The crystals first are
allowed to grow freely during a calculation cycle according to eq (5). Next the growth
volume for that cycle for each crystal is calculated (AV;; pg), and the growth volumes for
all crystals are summed (2AV;pg). The unconstrained growth volume for each crystal
then is reduced proportionately by the ratio of allowed volume to unconstrained growth
volume:

AV, = (AV >4V, 8
= (Vg ®)
The corrected growth volume for each crystal (AV)) is added to the previous volume of
the crystal, and a new diameter for each crystal for that growth cycle is then calculated
from the equation for the volume of a sphere. The calculation is repeated for each growth
cycle. Therefore, during this type of growth the LPE is still the growth law, but growth is
limited proportionately by supply.

Equation 10:

2. For diffusion-controlled ripening, the instantaneous rate at which a crystal changes size
is given by:

r

; (10)

where r = the crystal radius, t = time (or calculation cycles), r* = the critical radius,
which is equal to the mean radius (), and K is a constant (see app. 2).

Equation A20:

A remarkable feature of surface- and supply-controlled Ostwald ripening is the evolution of the crystal size
distribution with the passage of time. It was shown by Lifshitz and Slyozov (1961) and Wagner (1961) that at
large time this distribution can be approximated by certain universal functions that develop irrespective of the
initial CSD. For example, in the case of supply-controlled crystal growth this fanction has the form:

f(r, t) = Const

(t74/3)u2 3 ) A%
(3 — 2u)”/3(3 + u)7/3 exp 2“ —_ 3 ( )
where u = /T = 1/r*. As can be seen in figure 9A, normalized f(r, t) has an asymptotic profile with two
characteristic features: (A) this function is equal or very close to zero at u > 3/2 or r > (3/2)f; (B) it has a
left-hand skewed distribution of crystal sizes.
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Eberl, D., Kile, D., and Drits, V. (2002a) On geological interpretations of crystal size
distributions: Constant vs. proportionate growth. American Mineralogist, 87, 1235-
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FIGURE 3. CSDs measured (Kile et al. 2000) and calculated for
calcite growth experi (A) Initial, 4 CSD (CCNG-44/1;
squares) and final, measured CSD (CCNG-44/2: circles) with lognormal
fits (solid lines). The two calcites were taken from the same solution
after different reaction times. (B) The final, normalized, measured CSD
(CCNG-44/2; circles) modeled from the initial CSD (CCNG-44/1) by
Equation 2 (broken line), by supply lled modification of Equati
3 using the GALOPER program (thick solid line), and by multiplying
by a constant (thin solid line).
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Figure 12. TEM images reflecting the sequence of stages in the oriented attachment of nanocrystals.!'4°
(a) Original FeSs crystals, (b) agglomeration of crystallites, (¢) attachment of crystallites, (d) recrystallization to form cubic single crystals,
(e—h) formation of thin FeS; plates as a result of attachment and recrystallization processes.
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FIGURE 2. Representative plots showing CSDs superimposed on the theoretical lognormal curves (solid lines): (a) microcline, LGR, 1985;
(b) microcline, LGR, 1989; (¢) microcline, north of LGR, 1992; and (d) quariz, LGR, 1985,
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FIGURE 1. Water-jacketed crystallization vessel with variable-speed
stirrer for alum experiments.
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FIGURE 6. Greigite (?) from Pyramid Lake, Nevada: (a)
photomicrograph of crystals found within diatom tests, and (b) CSD

measured for crystals compared with a Galoper simulation (x*
significance >20%).
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The Galoper simulation used a critical nucleus size of 3 nm (read from
Fig. 10, using ) = 20 from Table 1) with 143 crystals nucleating per
calculation cycle, followed by supply-controlled growth to the correct

probability for nucl of 0.6, followed by supply licd growth;
significance level for )’ comparison b imulation and

ments = 10 to 20%. (B) Plot of size vs. frequency for a typical lognormal
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leation of 0.85, followed by supply-controlled growth; significance
level > 20%. (C) Plot of size vs. frequency for a typical log: | profile
of synthetically grown calcite (CCNG-43/3). Galoper simulation used a
critical nucleus size of 3 nm (Table 1 and Fig. 10), and a probability for
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1 methods and conditions for calcite crystal growth experiments.

Table 1. § y of exp
Initial concentration (M)

Sample CSD  Initial vol. Excess (mL) Start Final ) Calculated

no. shapes (mL) CaCl, NaHCO, Na,CO,; KNO, NaCl CaCl, + KOH pH" pH Duration _initial 2 Final 1
CCNG-2  asymptotic 150 0.0020 0.002 0.093 15 85 8.5 100 min 20 23
CCNG-30 asymptotic 300 0.0020  0.002 0.093 30 85 84 195min 20 172
CCNG-35 lognormal 300 0.0020  0.002 0.093 30 88 87 140 min 30 24
CCNG-40 lognormal 300 0.0020 0.002 0.093 67 87 84 30min* 40 19
CCNG-42  lognormal 300 0.0020  0.002 0.093 45 87 85 7 hours® 32 21
CCNG-43  lognormal 300 0.0020  0.002 0.093 33 86 8.5 230min® 22 18
CCNG-44 lognormal 300 0.0020  0.002 0.093 32 86 85 Shours 22 17
CCNG-45 lognormal 300 0.0020  0.002 0.093 64 88 85 225min* 41 2?
CCNG-9  Ostwald 100 0.0265 0002 00244 0046 107 100 ~1min 3090°
CCNG-13 Ostwald 100 0.0265 0.002 0.0244  0.046 107 84 l4hours  3090° 42
CCNG-19 Ostwald 400 0.0050 0.0050 0.50 105 100 40 min 106 67
CCNG-20 Ostwald 200 0.0265 0002 00244 0.046 10.5 8.1 90.5hours  3090° 2
CCP-4°  Ostwald 400 0.0020 0.002 0.093 85 85 45hours 5 5
7-26 transitional 400 0.0025 0.0025 0.025 025 103 103 53 min 282 t
7-12 transitional 400 0.0038 0.0050 0.05 050 105 105 50 min 53.7 &
7-20 transitional 400 0.0050 00050 005 050 103 103 49 min 69.2 "
CCNG-25 bimodal 0.0050  0.005 0.50 99 9.7 105 min 514 105

" In lognormal experiments, the time listed is the time from highest pH to final sampling.
® Ca®* concentration data not available for calculation,

¢ Actual value of omega does not exceed ~100 duc to short induction time.

¢ Constant composition experiment using CCNG-19 crystals as seed.

P

Table 2. Crystal size distributi o .
able 2. Crystal size distribution data and statistical evaluation for calcite crystal growth experiments; horizontal lines indicate conti
3 ontinuous growth

‘cxperiments,
Lognormal
CSD shape Sample no. « £ oy e D e
: size (nm X test
Sy covg w2 845 064 1,500
Zrade covam 878 068 1,700 Saer Na
] . 7.60 052 1,000 258 iy
logornat oG 891 030 1,000 8500
oogrorn conG-g212 9.49 027 2,000 14,870 e
962 036 1,500 17810 1520
lognormal ‘
logorma g Lo 038 2,000 7,140 >20
lo Y 049 2000 ;
gnormal CCNG-43/3 961 038 2,000 1758 3
lognormal CONG-4411 ‘
) 881 032
ogrormal CONG-4412 9.49 023 Fre] 14300 ]
o— ' ' .
Jogo ew 865 0.16 1,000 6200
lognorna oG4 933 025 2700 12,690 o
Imgnmml CONG 3 2.03 032 2,000 9770 S
ormal cite 772 059 500 2944 e
Ostwald CONG 9 ; .
Ostwad 914 0.10
Qawald CCNG-13 1020 0.09 300 s Na
Ouvaid oG 1 92,01 0.09 1,000 2:?2“2) Na
2 950 Y NA
o 0.08
iwald ccr4 924 007 200 Toga Na
transitional 726 ’ ’ “
i 9.40 031
Iransitional g .
ranstional 112 9.15 013 7000 e Na
z 965 024 2,000 s Na
- ; NA
modal CCNG-25 9.93 025 3,000 2812 NA

NA = not applicable.





