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Introduction  

• Text S1-S2 provides detailed description of EPMA analysis and LA–ICP–MS 

analysis.  

• Figure S1-S4 include the HFSE content characteristics of natural carbonatite 

samples, the correlation diagram between SiO2 content and HFSE contents in 

carbonatite and silicate melts and the correlation diagram between 𝐷!"#$
%&/#( and 

F and SO3 in carbonatitic melt. Figure S5. Comparison of partition coefficients 
of high field strength elements between carbonatite and conjugate alkaline 
silicate melts from this study and previous studies. Figure S6. Diagrams 

illustrating the dependence of 𝐷#)
%&/#( on pressure and temperature. 

 
 

Text S1. Electron microprobe analysis  

The experiment run products were mounted in resin and then polished using 

ethanol to avoid dissolving carbonate phases. The JEOL JXA-8230 EPMA, equipped 

with WDS and BSE imaging, was used to analyze the phase assemblages and textures 

of the quenched silicate and carbonatitic melts. The quenched silicate and carbonatitic 

melts were subjected to analytical conditions that included a 15 kV acceleration voltage, 

a 10 nA beam current, and a 20 μm diameter beam size. The peak counting time was 10 

s for Na, 20 s for Si, Ca, Al, Mg, and F. To obtain accurate concentrations of S in the 
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quenched silicate glasses and carbonatitic melts, a peak counting time of 180 s and 

analytical conditions of 15 kV and 70 nA were used. The instrument was calibrated 

using natural and synthetic standards, such as albite for Na, chrome-diopside for Si and 

Ca, olivine for Mg, spinel for Al, fluoride for F, and barite for SO3. BCR-2G anhydrous 

basaltic glasses were used to monitor the accuracy of major elements (Jochum and Nohl, 

2008), and NIST 610 was used to monitor the accuracy of S (Jochum et al., 2011). The 

analytical accuracy was estimated to be better than 2% relative for SiO2, Al2O3, and 

CaO, 5% relative for MgO, and 10% relative for Na2O, SO3, and F. The CO2 content in 

the carbonated silicate melts was estimated using EPMA analytical totals from 100 wt.% 

with the method previously described in previous studies (Dasgupta and Hirschmann, 

2006; Lane and Dalton, 1994). 

Text S2. LA–ICP–MS analysis 

The silicate and carbonatitic melts were subjected to Laser Ablation-Inductively 

Coupled Plasma-Mass Spectrometry (LA-ICP-MS) analysis to determine their major 

and trace element compositions. The analysis was carried out using a Photon Machines 

Analyte HE 193 nm ArF Excimer Laser Ablation system coupled to an Agilent 7900 

Quadrupole ICP-MS. The laser was operated at a frequency of 8 Hz and an energy of 

approximately 2 J/cm2 for 40 seconds, preceded by a 20-second measurement of a gas 

blank. The laser beam size ranged from 40 to 70 µm. Helium was used as a carrier gas, 

mixed with argon as the make-up gas via a T-connector before entering the ICP. Dwell 

times of 10 ms were used for isotopes 23Na, 25Mg, 27Al, 29Si, 31P, 39K, 43Ca, 91Zr, 93Nb, 
178Hf and 181Ta. Quantification of all elements was carried out using the NIST 610 

standard glass, with additional checks made using the NIST 612 and BCR-2G natural 

basaltic glass standards (Pearce et al., 1997; Rocholl, 1998), all analyzed under the same 

ablation conditions as the samples. Ca and Si contents determined by EPMA were used 

as internal standards for carbonatitic and silicate melts, respectively. Data processing 

was performed offline using ICPMSDataCal (Liu et al., 2008). The estimated analytical 

uncertainties due to internal and external standardization were approximately 5% for 

major elements and 10-15% for trace elements. 
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Supplementary Figure S1-S7 

 

Supplementary Figure S1. (a) The high-field strength element content 
characteristics of natural carbonatite samples. PM: primitive mantle, values are 
from McDonough and Sun (1995). (b) The Nb/Ta and Zr/Hf ratios of natural 
carbonatites. The gray area represents the Nb/Ta and Zr/Hf ratio characteristics of the 
silicate end-member rocks commonly found on Earth Pfänder et al. (2007). These data 
were collected from the GEOROC database.  
 

 

Supplementary Figure S2. Illustration of the correlation between SiO2 content and 
high-field-strength element content in carbonatite melt. The data comes from this 
study and previous studies (Martin et al., 2013; Martin et al., 2012; Nabyl et al., 2021; 
Nabyl et al., 2020; Veksler et al., 2012).  

American Mineralogist: September 2024 Online Materials AM-24-99093 
Zhang et al.: High field strength elements during liquid immiscibility 



 
 

 
Supplementary Figure S3. Illustration of the correlation between SiO2 content and 
high-field-strength element content in conjugate silicate melt. The data comes from 
this study and previous studies (Martin et al., 2013; Martin et al., 2012; Nabyl et al., 
2021; Nabyl et al., 2020; Veksler et al., 2012). 
 
 

 

Supplementary Figure S4. 𝑫𝑯𝑭𝑺𝑬
𝑪𝑴/𝑺𝑳 against F (wt. %) in carbonatitic melt (a) and 

SO3 (wt. %) in carbonatitic melt (b). Noteworthy, no significant correlation between 

the SO3, F and the 𝐷!"#$
%&/#(  were observed. The data comes from this study and 

previous studies (Nabyl et al., 2021; Nabyl et al., 2020; Veksler et al., 2012). 
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Supplementary Figure S5. Comparison of partition coefficients of high field 

strength elements between carbonatite and conjugate alkaline silicate melts from 

this study and previous studies. The carbonatitic melt is represented by CM and the 

silicate liquid by SL. The data from previous studies are from Veksler et al. (1998, 2012), 

Martin et al. (2012, 2013), and Nabyl et al. (2020, 2021). The partition coefficients from 

this study are consistent with the patterns seen in previous studies, although they are up 

to one order of magnitude higher than those of Veksler et al. (1998, 2012). 

 

Supplementary Figure S6. Diagrams illustrating the dependence of 𝑫𝑺𝒊
𝑪𝑴/𝑺𝑳  on 

pressure (a) and temperature (b). As shown, increasing temperature and decreasing 

pressure both lead to higher values of 𝐷#)
%&/#(. 
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Figure S7. (a) and (b): Correlation diagrams show the Nb and SiO2 from both Nb 

mineralized and non-mineralized carbonatite-silicate complex. Panels (c) and (d) 

illustrate the Zr/Hf versus Nb/Ta ratios in natural carbonatite-silicate complexes. 

The carbonatite-silicate complex data is sourced from Weishan (China), Mianning-

Dechang Belt (China), Mountain Pass (America), Miaoya (China), Bayan Obo (China), 

and Araxá (Brazil) (Castor, 2008; Hou et al., 2015; Hou et al., 2006; Liu et al., 2019; 

Palmieri et al., 2022; Poletti et al., 2016; Su et al., 2019; Verplanck et al., 2016; Wang 

et al., 2019; Wang et al., 2001; Xu et al., 2003; Yang et al., 2023; Zhang et al., 2019). 

In these diagrams, colored symbols represent mineralized complexes, while gray 

symbols represent non-mineralized complexes. Notably, the primitive magma in 

mineralized systems exhibits higher Nb content than in non-mineralized systems. 

Additionally, the immiscible silicate melt in mineralized systems has a lower SiO2 

content. 
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Captions for Tables S1 to S3  

Table S1. Major and trace elements of the quenched carbonatite melts (major elements 
in wt.%; trace elements in ppm). 

Table S2. Major and trace elements of the silicate liquid (in ppm for trace elements and 
in wt.% for major elements).  

Table S3. Major and trace elements of the natural carbonatite-silicate complex samples 
(major elements in wt.%; trace elements in ppm). 
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