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Abstract
The geographic provenance of minerals provides key insights into a range of geologic problems, 

including the source of gem materials. The tourmaline supergroup is unparalleled in its ability to record 
and preserve extensive chemical signatures of its formational environment. To evaluate the likelihood 
that tourmalines of similar compositions from separate geographic localities could be differentiated, 
a multivariate statistical approach has been utilized on two complementary data sets. These chemical 
analytical data sets of copper-bearing “Paraíba” tourmaline include data sets acquired with Laser 
Induced Breakdown Spectroscopy (LIBS) and electron microprobe analysis (EMPA).

Fifty-four samples of copper-bearing tourmalines from known source locations from Brazil (São 
José de Batalha of Paraíba state and the neighboring Rio Grande do Norte state), Mozambique, and 
Nigeria, were analyzed using LIBS with a subset of these samples analyzed by EMP. Data sets obtained 
by each method were evaluated with multivariate statistics (PCA, PLSR). Although the sample set is 
limited, sequential PLSR modeling of the spectra clearly distinguished the four localities with high 
success: >95% for LIBS and >87% for EMP. The statistical analyses of the two techniques, LIBS and 
EMP, suggest that each technique emphasizes different elements for discrimination when considered 
in the context of the available data. The elements Cu, Mn, Fe, Mg, Ti, Zn, K, H, Co, and V were 
significant in LIBS chemometric models. Statistically significant elements in EMP models were Mn, 
Cu, Al, Ca, K, and F. Each technique results in a robust determination for geographic provenance of 
tourmalines with comparable compositions. The significant distinguishing chemical elements reflect 
geochemical distinctions in each host environment that are imparted on the tourmaline. Multivariate 
statistics applied to LIBS and EMP data provide an effective tool for provenance discrimination of 
Paraíba tourmalines, distinguishing Brazilian-sourced samples from African-sourced materials. These 
data provide new methods for separating the geographic origin of minerals with very similar composi-
tion such as demonstrated here for copper-bearing tourmalines.
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Introduction
The determination of the geographic origin (provenance) 

of minerals separated from their original host rock can provide 
significant insights into various geological processes. Provenance 
studies can relate to a geographic origin or locality, which may 
be associated with a spatially restricted geologic unit or to a host 
rock environment. For example, provenance elucidates shifting 
patterns of modern and ancient sedimentation (e.g., Morton et 
al. 2005), provides key information on paleogeographic/tectonic 
reconstructions (e.g., von Eynatten and Gaupp 1999), establishes 
a basis for identification of valuable minerals mined in conflict 
zones (e.g., Hark et al. 2012; McManus et al. 2020) or the likely 
sources of some gemstones (e.g., Palke et al. 2018) and refines 
exploration strategies key to identifying sources of needed critical 
materials (e.g., Lohmeier et al. 2021). Additionally, geographic 

origin of gem materials is a complex and important problem in 
the world economy as companies and organizations strive to 
maintain and certify a supply chain free of conflict minerals. 
In other cases, substantial price differences of gemstones result 
from their different geographic origins. Commonly, mineral 
chemistry is utilized to provide provenance information. This 
chemical distinction is challenging when differences among 
possible source areas are subtle or exhibit considerable overlap 
in chemical parameters or when age criteria alone are insufficient.

Many minerals retain chemical signatures of their formational 
environment, but no mineral embeds the range of chemical 
fingerprints better than the minerals of the tourmaline super-
group. Even during a complex, multistage geologic history that 
can include crystallization, weathering, reburial, metamorpho-
sis, regrowth, and deformation, tourmaline retains textural and 
chemical signatures of its earlier evolutionary history (e.g., Henry 
and Guidotti 1985; Henry and Dutrow 1996; van Hinsberg et al. 
2011a, 2011b). Tourmaline’s utility as a petrogenetic indicator 
stems, in part, from its (1) complex crystal chemistry, providing 
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structural and chemical flexibility to incorporate a wide range 
of chemical constituents of multiple valence states and sizes to 
imprint a signature of its chemical environment of formation; 
(2) stability over an extensive range pressures (P) and tem-
peratures (T) encompassing nearly all crustal and upper-mantle 
conditions; (3) ability to form in widely varying rock and fluid 
compositions; and (4) minimal volume diffusion such that its 
imprinted chemical signature remains intact [see summaries by 
Henry and Dutrow (1996), Dutrow and Henry (2016), and van 
Hinsberg et al. (2011b)].

The rich chemical signatures, coupled with its mechanical 
and chemical stability, make tourmaline a unique target for 
establishing new methodologies for provenance studies. In some 
instances, chemical distinctions among sources are subtle, yet 
critical to define. An excellent test case, and one of economic 
interest, is the sourcing of copper-bearing tourmalines. Determin-
ing their geographic origin, or provenance, is challenging and 
has important financial implications.

Copper-bearing elbaitic or liddicoatitic tourmaline is widely 
prized as a gemstone due to its vivid, saturated, “neon” blue hues 
that are caused by the incorporation of Cu2+ as a chromophore 
(Fig. 1; e.g., Rossman et al. 1991). Originally discovered in the 
1980s in Brazil near the São José da Batalha Mine in the state of 
Paraíba (Koivula and Kammerling 1989) and later in the 1990s 
in the nearby state of Rio Grande do Norte (e.g., Fritsch et al. 
1990; Shigley et al. 2001), these exquisite Cu-bearing specimens 
became known as Paraíba tourmalines (Fig. 1). Subsequently, 

other localities hosting similarly colored Cu-bearing tourmalines 
were found as elbaitic tourmaline in Nigeria in 2001 (Smith et 
al. 2001) and Mozambique in 2004 (Wentzell 2004; Abduriyim 
and Kitawaki 2005; Laurs et al. 2008; Katsurada and Sun 2017). 
The African tourmalines were found originally in secondary 
alluvial deposits. Chemically, all of these tourmalines are classi-
fied as elbaite or fluor-elbaite species, with a general formula of 
Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH) or F replacing one OH 
[for species nomenclature see Henry et al. (2011) and Henry and 
Dutrow (2018)] and Cu2+ substituting into the octahedral site that 
typically accommodates Li-Al. In 2017, Cu-bearing fluor-liddi-
coatites—Ca(Li2Al)Al6(Si6O18)(BO3)3(OH)3(F)—were discovered 
and were attributed to a locality in Mozambique (Katsurada and 
Sun 2017). The varietal name, “Paraíba” tourmaline, is used to 
refer to any of the saturated blue, green, and violet tourmalines 
containing Cu2+ ± Mn2+ as chromophores (LMHC 2023). Paraíba 
tourmaline sources for gemstones are difficult, if not impossible, 
to distinguish based on color alone. Yet, the Brazilian material 
from the original mine area can command prices that are 5–10 
times higher than those of their African counterparts of compa-
rable quality and size. Consequently, provenance is an essential 
component of the tourmaline’s value as a gemstone.

Major-element tourmaline “environmental” diagrams such as 
the Al-Fe-Mg ternary (Henry and Guidotti 1985) are not effective 
for determination of Paraíba tourmaline sources because most 
have elbaitic composition except for the liddicoatitic tourmalines 
which are easily distinguished based on their elevated Ca con-
tents. Consequently, this necessitates the use of other criteria such 
as minor and trace elements to potentially fingerprint the likely 
source of Paraíba tourmalines. For gemmy Paraíba tourmaline, 
most attempts at provenance evaluations rely on quantities of 
a limited number of trace and minor element constituents (e.g., 
Cu, Zn, Ga, Sr, Sn, Pb), obtained via LA-ICP-MS, or isotopes, 
obtained via Secondary Ion Mass Spectrometry (Ludwig et al. 
2011), that are plotted in simple binary or ternary diagrams 
or in a serial combination of these diagrams as a means to 
deconvolute the overlapping chemical signatures distinctive of 
a source (e.g., Abduriyim et al. 2006; Peretti et al. 2009; Palke 
et al. 2018; Okrusch et al. 2016; see review by Katsurada et al. 
2019). Although these types of provenance diagrams have met 
with varying degrees of success, they do not holistically consider 
the entire range of Paraíba tourmaline chemistry available for 
provenance evaluation.

This contribution explores the use of a multivariate statistical 
approach for enhanced provenance determination that consid-
ers a wider spectrum of chemical information available from 
two distinctively different, but complementary, newly acquired 
chemical analytical data sets of Paraíba tourmaline: laser-induced 
breakdown spectroscopy (LIBS) spectra and electron microprobe 
(EMP) chemical analyses. The purpose of this study is to deter-
mine if multivariate statistics can reveal whether one or both data 
sets can be more effective or, at least complementary, provenance 
indicators for minerals with very similar compositions.

Methods
The LIBS analytical sample set consists of 54 copper-bearing tourmalines 

with known provenance from four distinct localities (Fig. 2). Samples were 
obtained from highly reputable gem dealers specializing in Paraíba tourmaline 
(see Online Materials1 Appendix 1 for sample information). Representing Brazil 

Figure 1. Photo of a rough and facetted Paraíba tourmaline 
displaying the desired brilliant neon blue color. Crystal weighs 
8.80 ct, from Brazil. The facetted stone is a 10.91 ct neon blue Paraíba 
tourmaline (no heat) from the Batalha mine, Brazil. Cut gem courtesy 
of a Private Collector and Mona Lee Nesseth, Custom Estate Jewels. 
Photo composite: Robert Weldon/GIA. Used with permission from GIA.
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are 24 grains from two localities: São José de Batalha, Paraíba state [SJdB; the 
original Paraíba locality; 6 grains, 5.93 carats (ct), color-zoned blue, purple] and 
Rio Grande do Norte state (RGdN; 15 grains, color-zoned blue, purple; Figs. 2a 
and 2b). In addition, three samples displaying neon-blue colors are identified as 
from “Brazil” but with unknown specific localities, two samples are in matrix and 
one is a single crystal. Mozambique (Moz) is represented by 24 tourmaline grains 
with a spectrum of colors including pink, blue, purple, and green (total weight of 
51.73 ct; see Fig. 2c). Nigeria (Nig) is represented by 11 grains (totaling 28.28 
ct; Fig. 2d). Nigerian grains are largely green to blue-green. Most rough crystals 
measured less than 1 cm in size and were without the matrix material.

LIBS analyses
LIBS is a relatively recent analytical technique that is finding utility in the 

geosciences [e.g., see reviews by Fabre (2020) and Harmon and Senesi (2021)]. 
The information-rich spectra contain signatures of all elements in concentrations 
above detection limits (e.g., Cremers and Radziemski 2013), molecular emis-
sions, select isotopic ratios (e.g., Smith et al. 2002; Doucet et al. 2011: Russo 
et al. 2011), and some structural information (Serrano et al. 2015) resulting in a 
detailed chemical fingerprint of the material analyzed. To take advantage of the 
rich chemical data set embedded in tourmaline, this LIBS study uses the spectrum 
of relative peak intensities of each tourmaline rather than absolute quantities of 
individual elements within the tourmaline.

Minimal sample preparation is required for LIBS [see, e.g., McMillan et 
al. (2018, 2019) for additional information]. Rough samples were cleaned with 
isopropyl alcohol to remove oils and surface residue and air-dried. Most tourma-
lines are individual grains or clusters of grains. Originally, samples were mounted 
on a plexiglass sheet with BlueTac to secure the grains; later, the BlueTac was 
eliminated. The sheet was placed into the sample holder in the LIBS instrument 
chamber. LIBS data were acquired prior to EMP data analyses to avoid any 
possible contamination from EMP sample preparation, such as polishing and 
carbon coating of the grains.

Tourmalines were analyzed with an Applied Spectra J200 LIBS instrument 
at Materialytics, Inc., fitted with a Q-switched Quantel ULTRA 100 Big Sky 
Nd:YAG laser operated at a fundamental wavelength of 266 nm and <6 ns pulse 
width. The instrument utilized an Andor Mechelle ME 5000 spectrograph (λ/Δλ 

= 5000) and an Andor iStar ICCD (intensified charge-coupled device) camera, 
model DH334T-18F-03. Analytical conditions were a laser power of 150 mJ, 
with a delay of 0.5 microseconds (µs) between the time of the laser shot and 
light collection, a gate width (time of light collection) of 10 µs, and a nominal 
spot size of 50 µm (subsequent analyses demonstrated a larger ablation pit of 
nearly 80 µm). Spectra were obtained at 1 atm at room temperature in an argon 
atmosphere to confine the LIBS plasma and thus enhance emission intensity. 
Where grain size allowed, 64 shots were obtained per sample in an 8 × 8 grid 
with a spacing of 100 µm between shots—an area covering about 1 × 1 mm. 
An ancillary study suggested that 64 shots were optimal for characterizing the 
samples (McMillan et al. 2019). At each analytical location, a cleaning shot was 
done prior to the analytical shot. The spectral emission was collected over the 
26 000+ channels of the detector/spectrometer system to assemble the spectrum 
in the wavelength range from 200–1000 nm for each analytical shot. Spectra were 
truncated at 771 nm which preserves the potassium peaks at 766.5 and 769.9 nm 
but masks the primary argon peaks at higher wavelengths. Multiple shots per 
sample and their corresponding spectra are averaged and normalized to the mean 
peak intensity to produce a single spectrum per sample. Averaging LIBS spectra 
helps mitigate variations caused by inherent shot-to-shot variability (McMillan 
and Dutrow 2024). Background correction was not applied. Intensities were 
converted to log values for modeling purposes. Where necessary, identification 
of LIBS peak positions utilized the online NIST database of optical emission 
lines (Kramida et al. 2022).

Acquisition of such a large data set requires statistical methods and/or 
machine-learning techniques for data analyses and interpretation. This study 
employs the multivariate statistical techniques principal component analysis 
(PCA) (Esbensen 2004) and partial least-squares regression (PLSR) (Wold et 
al. 2001; Esbensen 2004) to quantitatively classify spectra with reference to the 
geographical source of the tourmaline. The strong emission response of some 
major elements required the masking of select peaks from the spectra to allow 
subtler chemical variations to be enhanced. For these tourmalines, masking of 
peaks for the elements Si, Al, Li, Na as well as the Ca peaks at 393.3, 396.8, 
and 422.7 nm resulted in improved models. While other multivariate statistical 
techniques may be advantageous, for this test case, methods used previously 
were followed (e.g., McMillan et al. 2018).

Figure 2. Selection of rough Paraiba tourmaline samples from the four localities used for LIBS investigation. (a) São José de Batalha, Brazil: 
Paraíba tourmaline samples with blue, green, purple, and pink colors, and with notable color zoning. (b) Rio Grande do Norte, Brazil: Paraíba 
tourmaline samples with similar blue, green, purple, and pink colors. (c) Mozambique: Paraíba tourmaline samples with blue, green, lavender, and 
pink colors. (d) Nigeria: Blue and green Paraíba tourmaline samples (see Online Materials1 Appendix 1 for more details).
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Multivariate statistical modeling
PCA is a dimension-reducing multivariate technique that calculates linear 

regressions, or Principal Components (PCs), through the data set in multivariate 
space (24 350 variables). A PCA score plot (sample analyses in n-dimensional 
space projected onto the plane of two principal components, e.g., PC 1 and PC 2) 
displays the spectral/compositional relationships of the data set in the two directions 
of the principal components. This comparison is used to determine the order in 
which the geographic localities (SJdB, RGdN, Moz, Nig) are modeled beginning 
with the compositionally most distinct group modeled first (Multari et al. 2010; 
Kochelek et al. 2015; McMillan et al. 2018).

PLSR models were used to quantitatively discriminate between the samples of 
the locality of interest and all other localities. PLSR is similar to PCA but includes 
the value of an independent variable, in this case, the Provenance Variable (PV), 
in the regression. Spectra of samples from the locality of interest were assigned 
a Provenance Variable value of 1; spectra of samples from all other localities 
were assigned a PV value of 0. To calibrate the model, 50% of the spectra from 
the geographic localities were selected; spectra from the 50% remaining samples 
were used for test-set validation in a later step. Because the database contained one 
spectrum per sample, no individual sample was present in both the calibration and 
validation sets, although samples from a given geographic locality were present in 
both sets. Statistical modeling was accomplished using the Unscrambler software 
by Camo. The nonlinear iterative partial least squares (NIPALS) algorithm was 
applied with 15 PLSR components; no weighting was applied to variables. All 

models are mean-centered [see also McMillan et al. (2018) for further discussion].
To quantitatively assign a spectrum to a locality group, a numerical value that 

separates calculated Provenance Variable values for the two groups in the calibration 
set is defined: the value of apparent distinction (VAD) (Kochelek et al. 2015). The 
VAD is calculated as the value that gives the highest number of correctly assigned 
samples during calibration. Any sample with a calculated PV value greater than or 
equal to the VAD is classified as a tourmaline within the group of interest; those 
with calculated locality variables less than the VAD are classified as belonging to 
the group of the remaining localities. Once a VAD is assigned, it does not change 
during validation.

PLSR models were validated using test-set validation. PV values are calculated 
for tourmaline spectra not used to calibrate the PLSR model. The VAD determined 
during calibration is used to predict whether each spectrum in the validation set 
belongs to the locality of interest or the group of the remaining localities. The 
prediction accuracy is calculated as the percent of correctly assigned test-set 
spectra for which locality information is known. For example, Model 1 evaluates 
São José da Batalha (SJdB) samples. Applying the VAD of 0.45 to the spectra not 
used in the calibration set, all of the São José da Batalha samples are predicted 
to be from this locality, as well as one African sample, and the other samples are 
predicted to belong to the group of remaining samples (Fig. 3). Thus, Model 1 is 
96% successful, one sample is miscategorized. Once validated, the decision tree of 
PLSR plots is developed for each remaining group of samples (RGdN, Moz, Nig).

Each PLSR model identifies spectra that belong to one group (i.e., the geo-

Figure 3. Graphs showing the calibration (left column) and validation (right column) results for the LIBS decision tree based on geographic 
locality. Samples used in the calibration set were not used in the validation set, leading to a different data distribution. The value of apparent 
distinction (VAD) determined in the calibration, shown as a dashed line, remains the same in the validation set. Note the change in scale. Each 
model indicates the number of samples correctly identified of the total number of samples from that locality and is given as a percent success. 
Because Mozambique is the final locality distinguished, it has the same success as the final model—Nigeria. Overall, 95% of validation spectra 
were correctly classified. See text for details.
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graphic locality). After a group is distinguished, those samples are removed from 
the data set and all subsequent models. In this case, São José da Batalha samples in 
Model 1 are removed. The order of the models may be critical to obtaining sufficient 
separation of samples. Each model is determined by choosing the compositionally 
most distinct group at each step, as defined by the relationships on a PCA score 
plot. Because the most distinct group is always eliminated, the samples near the 
final decision tree are those with the most compositional similarities. Typically, 
samples in those groups are indistinguishable from each other when modeled in 
the presence of the other samples, but the small differences between them can be 
extracted and used to separate these groups when they are modeled in isolation 
after the other groups are removed.

Electron microprobe analysis (EMP)
To test the applicability of the multivariate statistical approach on widely avail-

able tourmaline compositional data from EMP, a subset of 15 tourmaline samples 
for which LIBS data were obtained (Figs. 4a–4c; 5 grains Brazil; 6 Mozambique; 
4 Nigeria; and two additional samples), were analyzed by wavelength-dispersive 
spectrometry using the JEOL 8230 electron microprobe at LSU. Quantitative 
compositional analyses for major and minor elements were obtained at an ac-
celerating potential of 15 kV and a 10 nA beam current using a 2 µm spot size, 
with Na analyzed first. Natural minerals and synthetic materials were used as 
standards including andalusite (Al), diopside (Ca, Mg, Si), fayalite (Fe), chromite 

(Cr), kaersutite (Ti), rhodonite (Mn), willemite (Zn), chalcopyrite (Cu), galena 
(Pb), albite (Na), sanidine (K), fluorite or fluor-phlogopite (F), tugtupite (Cl) with 
synthetic Bi2Te3 (Bi), V-diopside glass (V), and GaAs (Ga). EMP detection limits 
are given in the Online Materials1. Li, H, or B cannot be effectively analyzed by 
the EMP and were not included in the data modeled. Two well-characterized elbaite 
tourmalines served as secondary standards. Count times for major elements were 
10 s on the peak, 20 s on the background, and for minor and trace elements 60 s 
peak, 30 s background. Analytical precision is estimated to be ±1% relative for the 
major elements and ±5% for the minor elements. Where color zoning is apparent, 
analytical traverses were made across the samples; in other cases, 10–30 analytical 
spots per grain were randomly selected.

Mineral formulas were normalized following the recommended procedures 
of Henry et al. (2011) permitting B, H, and Fe3+ to be calculated based on stoi-
chiometry and charge balance and Li estimated by the procedures of Pesquera 
et al. (2016). Calculating atoms per formula unit (apfu) served as an additional 
quality check for EMP data but the normalized data are not used for the statistical 
analysis. To avoid calculation artifacts, oxide weight percentages of measured 
elements were used for multivariate statistical modeling and are given in the 
Online Materials1.

Evaluating the efficacy of multivariate statistical models for separating the 
provenance of Paraíba tourmaline using EMP data followed the same methodology 
as for separating the LIBS data. However, only 18 variables per chemical analysis 
are available for modeling. Although the data set comprised 295 analyses, only 
15 samples were analyzed. All analyses for each sample were restricted to either 
the calibration or the validation set to ensure that the models focused on funda-
mental characteristics of the tourmalines rather than simply identifying analyses 
from the same sample. Because of the low number of samples, calibrations were 
based on analyses from 2–4 samples per country, and models were validated with 
2 samples from each country. As a result, the calibration set comprised analyses 
from 4 (Mozambique), 3 (Brazil), or 2 (Nigeria) samples, and the validation set 
comprised analyses from 2 samples from each country.

Results
Copper-bearing tourmalines analyzed in this study included 

elbaite or fluor-elbaite species; no samples of the rare Cu-bearing 
fluor-liddicoatite species were included. Representative EMP 
analyses for each geographic locality are given in Table 1. Cu-
bearing fluor-liddicoatites are Ca-dominant from Mozambique 
(Katsurada and Sun 2017) and their geographic origin is easily 
determined based on the Ca-dominance of the tourmaline.

Figure 4. Selection of polished Paraíba tourmaline samples, in 
epoxy, used for EMP data collection with sample numbers. (a) Color-
zoned Brazilian Paraíba tourmaline grain from the São José de Batalha 
(SJdB) and Rio Grande do Norte (BZ) localities. White arrow shows 
the location of a detailed EMP traverse. (b) Variety of colored Paraiba 
tourmaline grains from Mozambique. (c) Paraíba tourmaline grains 
from Nigeria. (see Table 1, Online Materials1 Appendix 1, and Online 
Materials1 for more information).

Figure 5. Representative LIBS spectrum from each of the four 
different localities for Paraíba tourmaline, stacked to show alignment of 
peaks. Brazilian localities are separated into: Brazil, SJdB for São José 
de Batalha; and Brazil, RGdN for Rio Grande do Norte. Selected major 
and minor elements are labeled. The black vertical line combines several 
features, two Ca and two Al emission lines within the labeling line.
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Table 1.	 Representative Paraíba tourmaline analyses of blue regions, average grain compositions, and maximum/minimum values of the grains
Location	 Brazil, Rio Grande do Norte	 Brazil, São José de Batalha	 Mozambique	 Nigeria
Sample no.	 18-BZ-Par-2bc	 19-BZ-SJbB-12	 18-Moz-Par-20	 18-Nig-Par-10
Analysis	 No. 12	 Grain	 Max	 Min	 No. 15	 Grain	 Max	 Min	 No. 8	 Grain	 Max	 Min	 No. 10	 Grain	 Max	 Min
		  average				    average				    average				    average
B2O3 

a	 11.07	 11.03			   11.04	 11.04			   11.05		  11.08		  10.99	 11.05
SiO2	 37.32	 37.39	 37.96	 36.93	 37.45	 37.46	 38.22	 36.95	 38.09	 38.16	 38.51	 37.53	 37.60	 37.93	 37.93	 37.16
Al2O3	 41.75	 40.79	 42.00	 38.82	 41.25	 41.47	 42.23	 40.92	 40.72	 41.10	 42.79	 40.56	 41.08	 41.06	 41.66	 40.56
TiO2	 0.00	 0.03	 0.10	 0.00	 0.03	 0.01	 0.06	 0.00	 0.01	 0.01	 0.06	 0.00	 0.08	 0.06	 0.08	 0.00
V2O3	 0.00	 0.00	 0.03	 0.00	 0.00	 0.00	 0.02	 0.00	 0.00	 0.01	 0.03	 0.00	 0.00	 0.00	 0.02	 0.00
Cr2O3	 0.00	 0.00	 0.02	 0.00	 0.00	 0.00	 0.01	 0.00	 0.00	 0.00	 0.01	 0.00	 0.00	 0.00	 0.01	 0.00
Fe2O3 

a	 0.00	 0.05	 0.00	 0.00	 0.00	 0.00	 0.20	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00
FeO	 0.00	 0.00	 0.18	 0.00	 0.00	 0.03	 0.00	 0.00	 0.01	 0.02	 0.04	 0.00	 0.02	 0.19	 0.19	 0.00
MnO	 0.59	 1.44	 2.34	 0.06	 0.14	 0.73	 1.47	 0.01	 1.02	 0.86	 1.02	 0.56	 1.41	 1.82	 1.82	 1.36
MgO	 0.00	 0.01	 0.08	 0.00	 0.00	 0.01	 0.09	 0.00	 0.01	 0.00	 0.01	 0.00	 0.00	 0.01	 0.01	 0.00
ZnO	 0.00	 0.45	 2.24	 0.00	 0.00	 0.08	 0.51	 0.00	 0.15	 0.15	 0.19	 0.04	 0.03	 0.00	 0.05	 0.00
CuO	 1.47	 1.03	 1.89	 0.34	 1.41	 0.98	 1.67	 0.44	 0.40	 0.32	 0.42	 0.18	 0.36	 0.23	 0.50	 0.20
Li2Ob	 1.84	 1.82			   1.99	 1.86			   1.99	 1.97			   1.82	 1.76
CaO	 0.37	 0.23	 0.51	 0.06	 0.26	 0.31	 0.55	 0.08	 0.76	 0.71	 0.82	 0.31	 0.35	 0.30	 0.38	 0.28
PbO	 0.02	 0.01	 0.05	 0.00	 0.00	 0.01	 0.03	 0.00	 0.07	 0.08	 0.12	 0.04	 0.00	 0.00	 0.05	 0.00
Na2O	 2.08	 2.14	 2.57	 1.87	 2.05	 1.98	 2.19	 1.82	 1.99	 1.97	 2.08	 1.90	 1.97	 2.09	 2.15	 1.97
K2O	 0.02	 0.01	 0.02	 0.00	 0.01	 0.01	 0.02	 0.00	 0.01	 0.01	 0.02	 0.01	 0.02	 0.01	 0.02	 0.00
Bi2O3	 0.03	 0.05	 0.34	 0.00	 0.14	 0.06	 0.28	 0.00	 0.01	 0.02	 0.06	 0.00	 0.15	 0.08	 0.16	 0.07
F	 1.10	 1.03	 1.34	 0.68	 0.80	 0.94	 1.33	 0.75	 1.22	 1.08	 1.29	 0.71	 0.95	 1.07	 1.20	 0.80
Cl	 0.00	 0.00	 0.01	 0.00	 0.00	 0.00	 0.01	 0.00	 0.00	 0.00	 0.01	 0.00	 0.00	 0.00	 0.01	 0.00
H2Oa	 3.25	 3.32			   3.43	 3.33			   3.09	 3.14			   3.20	 3.12
Subtotal	 100.89	 100.83			   99.99	 100.31			   100.60	 100.68			   100.02	 100.76
O=F	 0.46	 0.43			   0.34	 0.40			   0.51	 0.46			   0.40	 0.45
  Total	 100.43	 100.40			   99.66	 99.91			   100.09	 100.23			   99.62	 100.32

15 Y+Z+T cation normalization
B site: Ba	 3.000	 3.000			   3.000	 3.000			   3.000	 3.000			   3.000	 3.000
T site: Si	 5.861	 5.893			   5.897	 5.898			   5.990	 5.985			   5.944	 5.947
B	 0.000	 0.000			   0.000	 0.000			   0.000	 0.000			   0.000	 0.000
Al	 0.139	 0.107			   0.103	 0.102			   0.010	 0.015			   0.056	 0.053
T site total	 6.000	 6.000			   6.000	 6.000			   6.000	 6.000			   6.000	 6.000

Al (total)	 7.726	 7.575			   7.656	 7.693			   7.548	 7.597			   7.654	 7.652

Z site: Al	 6.000	 6.000			   6.000	 6.000			   6.000	 6.000			   6.000	 6.000
Cr3+	 0.000	 0.000			   0.000	 0.000			   0.000	 0.000			   0.000	 0.000
V3+	 0.000	 0.000			   0.000	 0.000			   0.000	 0.000			   0.000	 0.000
Fe3+ a	 0.000	 0.000			   0.000	 0.000			   0.000	 0.000			   0.000	 0.000
Mg	 0.000	 0.000			   0.000	 0.000			   0.000	 0.000			   0.000	 0.000
Z site total	 6.000	 6.000			   6.000	 6.000			   6.000	 6.000			   6.000	 6.000

Y site: Al	 1.587	 1.468			   1.553	 1.591			   1.538	 1.582			   1.598	 1.599
Ti	 0.000	 0.003			   0.003	 0.002			   0.001	 0.001			   0.009	 0.003
V3+	 0.000	 0.000			   0.000	 0.001			   0.000	 0.001			   0.000	 0.001
Cr3+	 0.000	 0.000			   0.000	 0.000			   0.000	 0.000			   0.000	 0.000
Fe3+ a	 0.000	 0.006			   0.000	 0.000			   0.000	 0.000			   0.000	 0.000
Fe2+	 0.000	 0.000			   0.000	 0.004			   0.001	 0.002			   0.002	 0.009
Mn2+	 0.078	 0.193			   0.019	 0.097			   0.135	 0.114			   0.188	 0.211
Mg	 0.000	 0.003			   0.000	 0.002			   0.003	 0.001			   0.000	 0.000
Zn	 0.000	 0.052			   0.000	 0.009			   0.018	 0.017			   0.004	 0.001
Cu	 0.174	 0.123			   0.167	 0.117			   0.047	 0.037			   0.043	 0.040
Lia	 1.160	 1.151			   1.257	 1.178			   1.256	 1.245			   1.155	 1.137
Y-site total	 3.000	 3.000			   3.000	 3.000			   3.000	 3.000			   3.000	 3.000

X site: Ca	 0.061	 0.039			   0.045	 0.052			   0.129	 0.120			   0.058	 0.052
Pb	 0.001	 0.000			   0.000	 0.000			   0.003	 0.003			   0.000	 0.001
Na	 0.633	 0.653			   0.627	 0.603			   0.607	 0.599			   0.605	 0.628
K	 0.004	 0.003			   0.001	 0.002			   0.002	 0.003			   0.003	 0.003
Bi3+	 0.001	 0.002			   0.006	 0.002			   0.000	 0.001			   0.006	 0.005
X-site vacancy	 0.300	 0.303			   0.322	 0.340			   0.259	 0.275			   0.328	 0.311
X-site total	 1.000	 1.000			   1.000	 1.000			   1.000	 1.000			   1.000	 1.000
V+W site: OH	 3.401	 3.488			   3.602	 3.501			   3.245	 3.286			   3.377	 3.328

V site: OHa	 3.000	 3.000			   3.000	 3.000			   3.000	 3.000			   3.000	 3.000
V site: O	 0.000	 0.000			   0.000	 0.000			   0.000	 0.000			   0.000	 0.000
W site OHa	 0.401	 0.488			   0.602	 0.501			   0.245	 0.286			   0.377	 0.328
W site: F	 0.546	 0.512			   0.398	 0.467			   0.605	 0.538			   0.474	 0.505
W site: Cl	 0.000	 0.001			   0.000	 0.001			   0.000	 0.000			   0.000	 0.000
W site O	 0.053	 0.000			   0.000	 0.031			   0.150	 0.176			   0.149	 0.166
V,W-site total	 4.000	 4.000			   4.000	 4.000			   4.000	 4.000			   4.000	 4.000

Species	 Fluor-	 Fluor-			   Elbaite	 Elbaite			   Fluor-	 Fluor-			   Fluor-	 Fluor-
	 elbaite	 elbaite							       elbaite	 elbaite			   elbaite	 elbaite
Notes: Minimum detection limits of minor and trace elements (in wt% oxides): TiO2 = 0.007; V2O3, Cr2O3 = 0.013; FeO, MnO, MgO = 0.016; ZnO = 0.026; PbO = 0.021; 
K2O = 0.009.
a Calculated based on stoichiometry and/or charge balance.
b Calculated based on the Li-estimation procedures of Pesquera et al. (2016).
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Multivariate statistics using LIBS data
LIBS spectra (unmasked) for the Cu-bearing elbaites display 

prominent Na, Al, Si, Li, and B peaks, in addition to Cu and Mn 
peaks as expected (Fig. 5). In several samples, LIBS detected 
minor and trace elements such as K, Mg, Bi, Zn, Ga, and Sr. 
The presence of these elements was confirmed by previous 
LA-ICP-MS analyses of Paraíba tourmaline (Z. Sun, personal 
communication). Although Ca and Mg are minor components, 
the high intensity of these emission lines reflects the relatively 
low ionization energy of the alkaline earth elements (Cremers 
and Radziemski 2013).

The decision tree for these sample suites consists of three 
models (Fig. 6; Dutrow et al. 2019). In an initial PCA that in-
cludes all the tourmaline spectra from the four localities (São José 
da Batalha, Brazil, SJdB; Rio Grande do Norte, Brazil, RGdN; 
Mozambique; and Nigeria), no single group clustered tightly 
and the groups overlapped in PC1-PC2 space (Fig. 7). The SJdB 
spectra were chosen as the first group to model because the São 
José da Batalha, Brazil PLSR model had the highest success rate 
of all possible first models. Model 1, which classifies spectra as 
either belonging to the SJdB group or to the group of all other 
tourmalines, is excellent (Fig. 6), despite the overlap of groups 
in PCA space (Fig. 7). The calibration shows separation between 
the groups with a VAD of 0.45 (Fig. 3). The validation is 96% 
successful, correctly classifying 25 of 26 samples. The one false 
positive is a sample of Nigerian tourmaline classified as SJdB.

The spectra of SJdB tourmalines were removed from all 
subsequent models. Model 2 classifies spectra as belonging to 
RGdN or to the group of all other tourmalines (Mozambique and 
Nigeria). There is a clear separation between the two groups in 
the calibration of Model 2 (Fig. 3), which used a VAD = 0.50 

value. The validation is 96% successful, correctly predicting 
the provenance of 22 of 23 samples (Figs. 3 and 6). Again, one 
Nigerian sample yielded false positive results. This sample is the 
same as that which was incorrectly classified as SJdB in Model 1.

Finally, Model 3 discriminates between tourmaline spectra 
from Nigeria and Mozambique (Fig. 6). Spectra are well sepa-
rated in the calibration with a VAD = 0.52 (Model 3; Fig. 3). 
The calibration is 94% successful, correctly classifying 16 of 
17 samples. One Nigerian sample was misclassified as belong-
ing to the Mozambique group; however, it is a different sample 
than the false positive sample in Models 1 and 2. The consistent 
misclassification of Nigerian samples suggests that the sample 
set is too small to be representative of the actual dispersion of 
compositions. Alternatively, on visual examination, this sample 
has a saw mark, which may have left a surface contamination or 
varied the surface texture of the sample, affecting plasma proper-
ties. Overall, the decision tree correctly classified 63 of 66 spectra 
(one spectrum per sample), resulting in a cumulative prediction 
accuracy of 95%. The overall true positive rate (only considering 
the location assigned to PV 1) is 94% (16 of 17; Fig. 3).

Based on the success of the previous geographic modeling, 
the geographic origin of two unknown Brazilian samples was 
predicted. Using the LIBS decision tree developed, both un-
known samples are classified as being from the Rio Grande do 
Norte, Brazil, locality.

Multivariate statistics using EMP data
A more widely used analytical technique for characterizing 

tourmaline mineral chemistry is by electron probe microanaly-
ses (EMP). As such, this multivariate statistical approach was 
developed using an EMP analytical data set obtained for a subset 
of the tourmalines for which LIBS data had been acquired (see 
Online Materials1 for all oxide weight percentages used for 
multivariate statistics). Importantly, in addition to the major ele-
ments, Cu, Mn, and F are present in the tourmalines in amounts 
readily analyzed by the EMP. F is not easily detected by LIBS 
but is with EMP. V, Cr and Pb are at, or below, EMP detection 
limits (Online Materials1).

Figure 6. Decision tree for PSLR modeling of LIBS spectra for 
Paraíba tourmalines shown with percent correctly predicted (success) 
for each locality. After locality samples are modeled, they are removed 
from all subsequent models. Numerical value of 1 refers to samples 
belonging to that model data set, 0 indicates all others. See Figure 3 
and text for details.

Figure 7. PCA score plot calculated using LIBS spectra of Paraíba 
tourmaline samples from four localities, shown by different symbols. 
Samples from different localities overlap and lack distinct data clustering 
per locality. PC1 accounts for 36% of the variance in the data set; PC2 
accounts for 13%. PCA plots are used to determine the sequence of 
PLSR models.
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Modeling EMP data with multivariate statistics followed 
similar procedures as the modeling for the LIBS data. Because 
of the smaller sample set size, both Brazilian localities were 
combined. The character of the EMP data set is different than 
the LIBS data set, in which each sample is represented by a 
single spectrum. For EMP data, 10–30 points were analyzed 
for each of the 15 tourmaline samples (Brazil: 5; Mozambique: 
6; Nigeria: 4), resulting in a total of 295 analyses. This data set 
captures the variability within each sample well, but there are 
too few samples to be representative of the variability within 
each country of origin.

A PCA score plot for the calibration EMP analyses in the 
models shows good clustering for analyses of each tourmaline 
sample but lacks distinct clustering of samples from each coun-
try (Fig. 8). Some relationships are consistent with those found 
via LIBS. For example, the Brazilian samples plot at negative 
values of PC2 over a large range of PC1 values. The Nigerian 
and Mozambican samples cover broad areas that intersect near 
the origin of the score plot. Analysis of more samples could help 
the PCA discern different relationships that might provide better 
separation of the groups.

PLSR is a supervised method where the variables (EMP 
analyses) are correlated with known provenance variables (PV). 
Because of this, PLSR models can be successful, regardless of 
messy relationships in PCA. Model 1 in the EMP decision tree 
(Fig. 9) separates Brazilian tourmaline analyses from the group 
of Mozambican and Nigerian samples. The calibration is 96% 
successful, correctly predicting the origin of 173 of 180 calibra-
tion samples with a VAD of 0.51 (Fig. 10). The validation is 
also 96% successful, correctly predicting the origin 110 of 115 
analyses. Five Brazilian analyses are predicted to belong to the 
group of all others; there are no false positives.

Model 2 is more complex. The calibration (Fig. 10) estab-
lishes relatively consistent Provenance Variable values for Mo-
zambican calibration analyses with an average near 1 (average = 

0.91; range = 0.36–1.36; standard deviation = 0.18). In contrast, 
the PV values calculated for Nigerian samples, while less than 1, 
are different from each other. One sample clusters at an average 
of 0.45 and the other with an average of 0.03 (Fig. 10). Because 
one Nigerian sample has relatively high calculated PV values, 
the VAD that results in the best model success is 0.62. This VAD 
value results in a calibration accuracy of 97% (112 correct pre-
dictions of 115), with two false negatives and one false positive. 
However, this VAD value is not the best choice for the validation 
(Fig. 10). A higher VAD would have yielded a higher success, 
as all of the Mozambican-validated analyses have comparable 
high calculated PV values, as do 19 of the 40 Nigerian validation 
analyses. This results in a prediction accuracy of 75% for this 
model (Figs. 9 and 10; 56 of 75 analyses). More samples with 
analytical data are needed to calculate more successful models. 
Overall, the EMPA decision tree correctly predicts the country 
of origin of 87% of the analyses.

Discussion
These combined results underscore the utility of multivariate 

analyses for separating likely geographic source localities of 
compositionally similar minerals, as demonstrated by elbaitic 
tourmalines. Significantly, these outcomes result in the separa-
tion of geographic localities using considerably different mineral 
chemical acquisition techniques. For both techniques, the high 
prediction accuracy of modeling suggests that even with a lim-
ited data set, subtle variations in chemical components, when 
taken as a whole, can provide important signatures of the source 
region. While the power of the data-rich LIBS spectra coupled 
with multivariate statistics has been previously demonstrated for 
separating locality information (e.g., Hark et al. 2012; McMillan 
et al. 2012; Schenk and Almirall 2010; Kochelek et al. 2015; 
Gyftokostas et al. 2020), multivariate statistics has not been 
demonstrated as a useful tool for separating localities using the 
widely available EMP data. For the LIBS technique, intensity 
of the emission lines reflects a combination of the elemental 
abundance and the emissivity properties. Separating locali-

Figure 8. PCA score plot for all EMP analyses used in this study. 
Specific samples and localities are given in different colors and symbols 
by sample number. Analyses from each sample plot in discrete clusters, 
but clear distinctions between tourmalines from different countries are 
not apparent.

Figure 9. PLSR decision tree based on EMP data with percent of the 
samples correctly identified as belonging to the known locality shown as 
success. Both localities in Brazil were grouped together because of the 
small sample set and represented by “Brazil”. See Figure 6 for details.
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ties in this data set required masking peaks from select major 
elements in part, because they hid more subtle and meaningful 
chemical variations. In contrast, for the quantitative EMP data, 
subtle differences in minor elements facilitated separation of 
geographic localities. However, because of the smaller sample 
suite, only broad categories could be distinguished. More EMP 

data from additional samples of each locality would further 
refine this procedure.

Loading plots (Fig. 11) exhibit the influence of each variable 
(elemental concentration for EMPA and wavelength intensity for 
LIBS) on the direction of the principal component through the 
data set. Variables with values close to zero have minimal impact 

Figure 10. Calibration (left) and validation (right) results for EMP decision tree. The dashed line indicates the selected value of apparent 
distinction (VAD). Each colored symbol represents a different locality as given. Overall, 87% of validation analyses were correctly classified.

Figure 11. Representative loading plots for PCA models of tourmaline compositions by EMP (a and b) and LIBS (c and d). Variables (elements 
for EMP and peaks for LIBS) that influence the direction of the principal component through the data set have high positive or negative values, 
depending on the direction of the influence. These elements exist at different concentrations in the samples modeled. Variables with values close 
to zero do not vary significantly among the samples.
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on the PC and are approximately the same in the samples as in 
the model. Variables with high positive values strongly influence 
the direction of the PC, have different values in the samples, and 
increase in concentration/intensity in the positive direction of 
the PC on a score plot. Variables with high negative values are 
similar, except that they increase in concentration/intensity in 
the negative direction of the PC. PCA models for each pair of 
localities were calculated for both LIBS and EMP data sets (Figs. 
7 and 8, respectively); representative loading plots are presented 
in Figure 11. For the EMP data, score plots of PCA data indicated 
a more significant influence of elements Mn, Cu, Al, Ca, and F with 
lesser influences of K when separating sources (Fig. 11). Previous 
Paraíba provenance determinations typically use the quantities of 
six elements (Cu, Zn, Ga, Sr, Sn, Pb), obtained by LA-ICP-MS, 
for discrimination of geographic source (e.g., Katsurada et al. 
2019). While Cu-Zn-Pb is more readily acquired by EMP and Ga 
to some degree, Pb and Sn are generally below EMP detection 
limits (typically <0.001 wt% oxide). Although these elements 
are below detection in EMP data sets, they are not for LIBS data 
acquisition. The dominant elements in LIBS loading plots are Cu, 
Mn, Fe, Mg, Ti, Zn, K, H, Co, V, Li, and Na. Interestingly, Ca, 
Sr, Sn, and Pb were not observed in loading plots for the LIBS 
data, suggesting these elements did not exert a major influence 
on the separation of localities for tourmalines studied here (Fig. 
11). That implies less that there is something missing from LIBS, 
but, perhaps, that different elements may enhance geographic 
discrimination (e.g., K, Bi, Mn, F). Such information allows the 
development of alternative diagrams for facilitating provenance 
determination with compositions determined by LA-ICP-MS. Ad-
ditionally, this study indicates that statistical analyses of the two 
techniques, LIBS and EMP, emphasize different elements. Even 
with the analytical limitations of each technique, robust results for 
geographic provenance are attained.

While the high success for discriminating provenance of re-
markably similar tourmaline compositions is encouraging, there 
are caveats. The Paraíba sample set analyzed here is relatively 
small with limited variability, in part due to the rarity and cost of 
materials. No Ca-dominant Cu-bearing tourmalines were among 
those analyzed, although these are straightforward to distinguish 
chemically by their Ca concentrations. Not all Cu-bearing tour-
malines analyzed display the characteristic “neon” blue hue of 
the prized Paraíba tourmalines (Fig. 1). Green, greenish-blue and 
violet hues were included in the sample sets to capture the likely 
range of chemical variability for Cu-bearing tourmalines. Ad-
ditionally, a large area is needed for the optimal number of LIBS 
analyses coupled with the 80 µm spot size. If the sample is zoned, 
the LIBS analytical spot can include overlapping chemical zones, 
unlike data obtained with the EMP. Other multivariate techniques, 
such as Bayesian Statistics (e.g., McManus et al. 2018) or machine-
learning algorithms, might enhance the discrimination further.

Overall, these data demonstrate that spectra obtained by LIBS 
can be used to provide provenance discrimination when coupled 
with multivariate statistics. Analyses are rapid, with minimal 
required sample preparation. Loading plots facilitate identifica-
tion of important elements in discriminating sample localities and 
can be used to decipher potentially new criteria for provenance 
determination. Moreover, multivariate analyses of EMP data 
also allow categories to be differentiated based on more readily 

obtained chemical data. Application of the multivariate statistics 
to EMP data suggests that K, Bi, Mn, and F may be additional 
provenance discriminators. Together these data elucidate elements 
most useful for geographic discrimination of localities and the 
sourcing of Paraíba tourmaline.

Geologic implications
Determining the provenance of mineral grains separated from 

their host rock has, for example, revolutionized paleogeographic 
reconstructions and provided new data on uplift histories and 
drainage basin development. While many provenance studies rely 
on zircon ages, expanding the types of detrital minerals used for 
provenance determination adds new, unexpected opportunities 
for past geologic reconstructions—the tourmaline source rock 
types and, for some compositions, the geographic locality can 
be distinguished. Additionally, in this time of conflict minerals, 
it is critically important to be able to source conflict gems and 
metals. This study provides a case study for new methods that 
allow minerals of very similar compositions to be separated based 
on chemical parameters. This study shows, for the first time, the 
power of multivariate statistics applied to EMP data for separating 
tourmaline localities. Multivariate statistics applied to LIBS and 
EMP data provide a robust tool for provenance discrimination 
of Paraiba tourmalines, distinguishing Brazilian-sourced samples 
from African-sourced materials. Accurate sourcing of gemstones 
has economic implications as does the sourcing of conflict stones, 
particularly when economic sanctions may be in place.
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