New Mineral Names

CHRISTOPHER EMPROTO¹ AND TRAVIS A. OLDS^{1,*}

¹Section of Minerals and Earth Sciences, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, Pennsylvania 15213, U.S.A.

ABSTRACT

This issue of New Mineral Names provides a summary of the newly described minerals from 2024 and selected information for recent descriptions from September 2024 to January 2025. New mineral name trends and observations are presented with an objective examination of new species and their broader implications. All minerals presented have been approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification (IMA-CNMNC).

SUMMARY OF MINERAL DISCOVERIES IN 2024

A total of 103 new mineral species were approved in 2024; see Bosi et al. (2024a-f, 2025, and references therein). This is a slight decrease from 2023, which saw 112 new mineral species approved (Olds and Emproto 2024). Of the 103 new species approved in 2024, 72 introduced new root names. Nioboixiolite-(Fe3+), peprossiite-(Y), and clino-ferrosuenoite, among others, belong to existing nomenclature systems. At the time of writing, at least 8 of the new minerals were previously known as synthetic compounds, including králíkite (BaCl₂·2H₂O), heimaeyite [Na₃Al(SO₄)₃], and vegrandisite (BaCl₂). There were at least 21 new structure types reported. This figure is not exact, as the structural details for many recent new minerals are unpublished. Minerals with structures noted as being closely related to known structures were not counted as having novel structure types. Two minerals with an extraterrestrial type specimen were approved in 2024: cafeosite and ohtaniite. At least 10 of the newly approved minerals in 2024 are of post-mining origin, including ferriphoxite, fanguangite, and amurselite.

Type and co-type localities for the 2024 cohort of new minerals are shown in Figure 1. The top four countries for new minerals in 2024 were the same as in 2023. In 2024, the new mineral counts for each country were: U.S.A. (16), China (13), Russia (11), and Germany (10). This is a slight reshuffle from 2023 when the new mineral counts for each country were: U.S.A. (13), Russia (13), Germany (10), and China (10). As was also observed for 2023, new minerals for 2024 were predominantly discovered in central Europe-with a total of 10 from Germany, 5 from Switzerland, 4 from Slovakia, 3 from the Czech Republic, and 2 from Poland. While several of these new minerals were found at world-famous localities that have been prolific producers of new minerals in the past, such as the Hagendorf pegmatites (sperlingite and fluor-rewitzerite), Caspar Quarry (karlleuite), and Clara Mine (slottaite and hyblerite) in Germany and the Lengenbach Quarry (giușcăite and geuerite) in the Swiss alps, there were also a few new localities represented among the 2024 new species cohort. This includes the Lindner Mine in Bavaria, Germany, where the type specimen of fluormacraeite originated, as well as the Šibeničný vrch deposit in Slovakia that produced the new Au-bearing pearceite-polybasite group minerals auropearceite and auropolybasite. Globally, some prolific areas that added new species this past year included the Tolbachik Volcanic Field in Russia (5 new species; type locality for 152 species), the Långban Mine in Sweden (1 new species; type locality for 80 species), and the Tsumeb Mine in

Namibia (3 new species; type locality for 75 species). Also of note are the 5 new species for the Bayan Obo deposit in Inner Mongolia, China, bringing the total new species count at this world-famous deposit to 23.

RECENTLY APPROVED

This section features just a few of the 47 minerals approved by the IMA-CNMNC in the period of September 2024 to January 2025; see Table 1 for the list and cursory details of all 47 minerals (Bosi et al. 2024e–f, 2025).

Slottaite, SrFe₃³⁺(PO₄)(SO₄)(OH)₆

The new mineral slottaite (IMA2024-051, Soi), ideally SrFe₃³⁺(PO₄) (SO₄)(OH)₆, is an alunite supergroup mineral discovered at the Clara Mine in Baden-Württemberg, Germany, by its namesake: mineral dealer and collector Carsten Slotta. Like other members of the alunite supergroup, slottaite is trigonal, R3m, and has the cell parameters a =7.2817(3) and c = 16.8198(3) Å. More than 472 unique mineral species have been recorded from the Clara Mine, placing this mine among the most prolific mineral localities on Earth. Interestingly, despite the very large number of mineral species found here and its long history of mining dating back to 1726, relatively few (17) were first discovered at the Clara Mine, compared to other famously diverse mineral localities such as the Poudrette Quarry in Canada (type locality for 73 of its 440 reported species), the Tsumeb Mine in Namibia (75/348), or the Franklin Mine in the U.S.A. (50/247) (www.Mindat.org). There is species-defining Sr in 4 of the 17 minerals first discovered at the Clara Mine. Of these, arsenogoyazite is the most widely distributed with 25 reported localities, while benauite and oberwolfachite are each reported from just three localities, and slottaite remains a one locality mineral at the time of writing. It is worth noting that Sr minerals make up a very small fraction of the Clara mine's mineral complement-with just eight Sr minerals reported here according to www.Mindat.org. Thus, it is significant that half of these eight Sr minerals were first discovered at the Clara Mine and that three of these four are extremely rare minerals. This indicates that Sr is present at the Clara Mine in unusual geochemical environments scarcely replicated elsewhere.

Marsaalamite-(Y), Y(MoO₄)(OH)

Marsaalamite-(Y) (IMA2024-050, Maa-Y), ideally Y(MoO₄)(OH), is a new molybdate mineral from Um Safi in eastern Egypt. The name references its type locality, the Marsa Alam district. A formal description of this new mineral was recently made available by Mahdy et al. (2025). Marsaalamite-(Y) is the OH analog of the synthetic materials Y(MoO₄) F and Y(MoO₄)Cl. In nature, tancaite-(Ce) is the only other mineral to

^{*} All minerals have been approved by the IMA CNMMC. For a complete listing of all IMA-validated unnamed minerals and their codes, see http://cnmnc.units.it/.

NEW MINERAL NAMES

TABLE 1. New minerals approved by the IMA-CNMNC from September 2024–January 2025^a

Anningte-(Ce) (Ca_2Ce_2)(VO_) 2024-060 /4/arm Gara Samai Formation Algeria yes Proxitive/evfolitie* Pd,MNTes 2024-022 Pno2, San José deposit Bolivia no Huntingdonite PBy,Sb,AsS,Sc, 2024-022 Pn17 Madoc Canada yes Moiraite Pb),Sb,AsS,Sc, 2024-028 P1 Madoc Canada yes Organization Mg,NN,O.,(OH), 2024-026 P3 Bayan Obo China nos Organization BLTe, 2024-036 P2./ Wishingou obo China yes Organization BLTe, 2024-036 P2./ Wishingou obo China yes Mariadianite-(Y)* Y(MoO,J(CH) 2024-050 P2./ Wishingou obo Germany yes Stotatite SFe(*(PO,J)(SO,J)(CD), 2024-057 PBcn Inden Dellen Ouaria Germany yes Mobosiotitic-(Fe'*) (Ma,J,E+3D, 2024-051 R3 Harrantion Germany yes	Mineral	Formula	IMA #	Space Group	Type Locality Area	Country	New RN
Proxitwelvefoldite* Pd,Ni,Te, 2024-034 P4,/mm Kalgoorlie Australia yes Cuprosenandorite Ag,(LuP),Sb,,Sc,,Si, 2024-022 PiT Madoc Canada yes Moriante Pb,,Sb,As,Si, 2024-027 PiT Madoc Canada yes Foyuante* Mg,Nb,O,Q,(OH), 2024-035 PiT Madoc Canada yes Corpulantopoynochlore Pb,Nb,As,Si,Cl, 2024-036 P2/r Yushui deposit China yes Meizhoutle Fe*V1*(PO,J,OH), 2024-036 P2/r Yushui deposit China yes Marsalamite-(Y)* Y(MoO,J,OH), 2024-030 P2/r Mina fara Egypt yes Noboxiolite(=fe*) (Nb,Zei3),CO, 2024-031 R3m Chara Mine Germany yes Noboxiolite(=fe*) (Nb,Mc,Jet3),CJ,O,O, 2024-035 Pbcn In den Delen Quary Germany no Noboxiolite(=fe*) (Nb,Mc,Jet3,H,O,Z,O,O), 2024-035 Pic Noboxiolite(=fe*) No,A(SO,J,TH,O)<	Anningite-(Ce)	$(Ca_{0.5}Ce_{0.5}^{4+})(VO_4)$	2024-060	I4,/amd	Gara Samai Formation	Algeria	yes
Cuprosenandorite Ag12Cup2b2Sb2Su4 2024-022 Pinz, San José deposit Bolivia no Pb2Sb2As2Su4 2024-027 PĪ Madoc Canada yes Moiraite Pb2Sb2As2Su4 2024-028 PĪ Madoc Canada yes Cuprosenandorite Bl1E1 2024-026 PJ Bayan Obo China no Cuprosenandorite Bl1E1 2024-026 PJ Bayan Obo China no Dulanggoute Bl1E1 2024-026 PJ Bayan Obo China yes Oxyblumbopyrochlore Bl1E1 2024-026 PJ Mining Plant I, CSA Mine Czechia yes Bac(L, 2H, O) 2019-070a P2,1/r Wishui deposit China yes Sorphumbopyrochlore Site Pi-1V-1V-1V(PO4)(OH), 2024-036 P2,1/c Wushui deposit China yes Sorphumbopyrochlore Site Pi-1V-1V-1V(PO4)(OH), 2024-036 P2,1/c Wushui deposit China yes Krailikite BaC(L, 2H, O) 2019-070a P2,1/r Wishui deposit China yes Sortaite Site Pi-1V-1V-1V(PO4)(OH), 2024-052 Cmcm Chara Mine Germany yes Soltatte Srfe+(PO4)(SO4)(SO4), 2024-053 P2/r Lindner Mine Germany no Baronite (H1-O)K(Mn1Fe1-1V), 2024-054 P2/r Lindner Mine Germany no Baronite (H1-O)K(Mn1Fe1-1V), 2024-053 C2/r Lindner Mine Germany no Baronite (GL3Ba3)(UO4Si,Si,O4)(OH), 2024-054 R3 Elfell'Volcano lceland yes Rotemite Ga4Cr4(OH), Cl-H1O, 2024-054 R3 Elfell'Volcano lceland yes Rotemite Ga4Cr4(OH), Cl-H1O, 2024-054 R3 Elfell'Volcano lceland yes Proto-oxyheeite Ag4Pb3Sb4Su5U, 2024-040 Crace Gambates Mine Italy no Amatosas Mine Gammite, 2024-044, 2024-044 P2,/r Monte Arsiccio Mine Italy no Amatosas Mine Pbfe+O4(OH)(Cl, H2O) 2024-043 P-/r Motte Arsiccio Mine Italy no Amatosa Mine Pbfe+O5(OH)(Cl, H2O) 2024-043 P-/r Motte Arsiccio Mine Italy no Amatosa Mine Pbfe+O5(OH)(Cl, H2O) 2024-043 P-/r Motte Arsiccio Mine Italy no Amatosa Mine Pbfe+O5(OH)(Cl, H2O) 2024-044 P2,/r Monte Arsiccio Mine Italy no Charadavite Pbfe+O5(OH)(Cl, H2O) 2024-043 P-/r Motte Arsiccio Mine Italy no Charadavite Pbfe+O5(OH)(Cl, H2O) 2024-043 P-/r Motte Arsiccio Mine Italy no Charadavite Pbfe+O5(OH)(Cl, H2O) 2024-044 P2,/r Motte Arsico Mine Maxik	Proxitwelvefoldite ^b	Pd₃Ni₄Te ₈	2024-034	P4,/mnm	Kalgoorlie	Australia	ves
Huntingdonite PD, SD, AsS, SL, 2024-027 PT Madoc Canada yes Moriatte PD, SD, AsS, SL, 2024-028 PT Madoc Canada yes Gyplumbopyrochlore Pb, Nb, QL, (OH), 2024-026 Fd3m Bayan Obo China yes Oxyplumbopyrochlore Pb, Nb, QL, (OH), 2024-026 Fd3m Bayan Obo China yes Meizhoutte Fe²vY (PO, J, (OH), 2024-036 P2,/r Yushui deposit China yes Kallikte Bad(-2H, OH) 2024-050 P2,/r Um Safi area Egypt yes Kyblerte Pp, BJ, SG, JJ, CO, JO, 2024-057 Pbcn Inden Dellen Quary Germany yes Noboixiolite: (Fe') (Nb, Fe), JSO, JO(OH), 2024-057 Pbcn Inden Dellen Quary Germany yes Stotatia Starte Starte Starte Yes Nadoscaskate: (Le), As, JO(OL), JSO, JO(OH), JO, JSO, JO(OH), 2024-058 P3. Eldfell Volcano Leand yes Barronite Ca, Kr, (H),	Cuprosenandorite	Aq16Cu8Pb24Sb22S144	2024-022	Pna2	San José deposit	Bolivia	no
Moiraité Pb, Sb, AS, S., 2024-028 PT Madoc Canada Fuyuanité* Mg, Mb, Ouj(OH), 2024-026 P3 Bayan Obo China yes Oxyplumbopyrochlore Pb, Nb, O, O 2024-026 P3 Bayan Obo China yes Maradamité Fe'*V[*(PO, J, OH), 2024-026 P2, /c Wishui deposit China yes Kralikite BaC, 2H, O 2019-070a P2, /c Mining Plant I, CSA Mine Carchia yes Kralikite Sfréj (PO, J)CO, H), 2024-052 Crincm Clara Mine Germany yes Slotaite Sfréj (PO, J)CO, ICH), 2024-051 R3m Clara Mine Germany no Rivorosciate (HL, OK)Mn, fr, Str. J(PO, J)CO, ICH), 2024-053 C2//c Lindner Mine Germany no Barronite Ca_Z, Cl, OH, J, SLO, J, CH, OJ, SLO, J, CH, OJ, SLO, J, CH, OJ, SLO, J, CHH, OJ, SLO,	Huntingdonite	Pb ₁₉ Sb ₁₆ As ₆ S ₅₁ Cl ₂	2024-027	Pī	Madoc	Canada	yes
Fuyuante* Mg,Nb,O ₁ (OH), 2024-059 P3 Bayan Obo China yes Oxyplumbopyrohlore Pb,Nb,O ₂ O 2024-026 Fd3m Bayan Obo China yes Meizhoutite Fe ² vY (PO,I),OH), 2024-036 P2,/r Yushui deposit China yes Krälikte Bad7,2H,O 2019-070a P2,/r HumigPlant (LSA Mine Cechia yes Marsaalamite-(Y) ^b Y(MoO,I)(OH) 2024-052 Cmcm Clara Mine Germany yes Slottaite Srfet [*] (PO,I)(SO,I)(OD,O, 2024-057 Pbcn In den Dellen Quary Germany yes Fluormacraeite [[(H,O)(IM,n/Fe,TIIPO,I)(OP(H,O),w4H,O 2024-057 Pbcn In den Dellen Quary Germany no Barronite [[(L],Ba_3,VIO,D),SiD,O(CH)+14,O 2024-053 R3/c Hartrum Komplex Issam yes Naboixolitic-(Fe ⁺¹) (Nb,Ze,Fel) 2024-054 P2,/c Lindner Mine Germany no Barronite [[(H,O)(IK],GI,H,H,D) 2024-053 R3/c Hartrum Komplex stark Helffel V	Moiraite	Pb ₁₃ Sb ₂ As ₂ S ₂₆	2024-028	P1	Madoc	Canada	ves
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fuvuanite ^b	Ma _z Nb _c O ₁₀ (OH) ₀	2024-059	P3	Bayan Obo	China	ves
Dufangouitéit,Te,*2024-067PB:n1Dulangóou gold mineChinayesMeizhouiteFe²-V2''(PQ,J_(OH),2024-036P2,/rYushui depositChinayesKrálikteBaCl,2H,O2019-070P2,/rMining Plant I, CSA MineCzechiayesMarsalamite-(Y)*YUMOO,J(OH)2024-050P2,/rUm Safi areaEgyptyesSlottaiteSrfe}'(PO,J(SO,JO,O,D,O,2024-052Cr.mcmClara MineGermanyyesSlottaiteSrfe}'(PO,J(SO,JO,O),OH),2024-057PbcnIn den Dellen QuarrygermanynoFluormacraeite[(H,OIK)/ms,Fe';1)(PO,J,(OF)(H,O),-4H,O2024-057PbcnIn den Dellen QuarrygermanynoBarronite(Cl_1,Ba ₀)(UO,J),Si,O,(OF)(H,O),-2024-053C2/mKrunkelbach depositGermanyyesRotemiteCa,Gr,G(H),G(2,4H,O2024-058R3cHartrurim ComplexIsraelyesRotemiteCa,Gr,G(H),G(2,4H,O2024-056RddOsayama mountain areaJapannoAmadoakaskate-(CeAg,Pba,Sba,Sha,Sha,Sha,Sha,Sha,Sha,Sha,Sha,Sha,Sh	Oxyplumbopyrochlore	Pb ₂ Nb ₂ O ₆ O	2024-026	Fd3m	Bavan Obo	China	no
$ \begin{array}{c} \text{Meizhoutle} & Fe^*Y_1^{*}(\Theta_{3},0(H)_{7}, 2024-036, P2_{1/c}, Wining Plant I, ČSA Mine Czechia yes \\ Králikite & BaCl_2H_0, 2019-070a, P2_{1/c} Mining Plant I, ČSA Mine Czechia yes \\ Marsaalamite-(Y)^b Y(MoO_3)(OH), 2024-050, P2_{1/c} Um Safi area Egypt yes \\ Hybierite & Pb_3B_3(SO_3)(CO_3), 2024-052, Cmcm Clara Mine Germany yes \\ Slottaite & Srfe_1^{*}(PO_3)(SO_1)(OH)_{2}, 2024-057, P3_{Cn}, Clara Mine Germany yes \\ Nioboxiolite-(Fe^+) & (Nb_{50},Fei3)0, 2024-057, P3_{Cn}, In den Dellen Quarry Germany no \\ Barronite & ((L)_{50a_3}, (L)_{50a_3}, (L$	Dulanggouite	BisTea	2024-067	$P\overline{3}m1$	Dulanggou gold mine	China	ves
Králikte BaCl, 2H,O 2019-070a P2,/n Mining Plant I, ČSA Mine Czechia yes Marsalamite-(Y) ^b Y(MoOJ(OH) 2024-050 P2,/c Um Safi area Egypt yes Slottaite SrFej*(PO,ISO,)C,O,O, 2024-051 R3m Clara Mine Germany yes Slottaite SrFej*(PO,ISO,O)(OH), 2024-051 R3m Clara Mine Germany no Fluormacraeite (IH-OIKIMn,IFe,TI)(PO,JA,OF)(H,O), 2024-053 C2/m Krunkelbach deposit Germany no Barronite (IL-JSA,SL,O)(OH)-2H,O 2024-053 C2/m Krunkelbach deposit Germany yes Belmonetite Ca,Cr,(OH),CL,4H,O 2024-053 C2/m Krunkelbach deposit Israel yes Proto-owyheetite Ca,AC,GC,V+7H,O 2024-040 Cncc Garazawa mine Japan no Amadoakasakate-(Ce CaCe(V+7H,MIn*)(SIG,O)(OH) 2024-041 P2,/n Monte Arsiccio Mine Italy no Amatosakate-(Ce CaCe(V+1H,MIn*)(SIG,O)(SIGO,O)(OH) 2024-0421<	Meizhouite	Fe ²⁺ V ³⁺ (PO ₄) ₃ (OH) ₃	2024-036	$P2_{1}/c$	Yushui deposit	China	ves
	Králíkite	BaCl ₂ ·2H ₂ O	2019-070a	$P2_1/n$	Mining Plant I. ČSA Mine	Czechia	ves
Hyberite Pb,Bi,(SO,),(CO,)O, 2024-052 Cmcm Clara Mine Germany yes Slottaite Srfe ⁺ , (PO,),(SO,)(OH), 2024-051 <i>R3m</i> Clara Mine Germany yes Slottaite Srfe ⁺ , (PO,),(SO,)(OH), 2024-051 <i>R5m</i> In den Dellen Quarry Germany no Barronite [[H,O)(S),(O,O),(OH)-2H,O 2024-053 <i>C2/m</i> Krunkelbach deposit Germany no Barronite [Ca,AGr.;(OH),:C], 4H,O 2024-053 <i>C2/m</i> Krunkelbach deposit Germany yes Belmonteite Ca,AGr.;(OH),:C], 4H,O 2024-040 <i>Cmce</i> Gambatesa Mine Italy yes Proto-owyheeite Ag.Pb@sbbs5n: 2024-021 <i>P2./n</i> Monte Arsiccio Mine Italy yes Shenganfuite PbTe ⁺ , O(Ch)(C),(H,O) 2024-044 <i>P2./n</i> Monte Arsiccio Mine Mata) no Vanadoakasakate-(Ce Cac(4 ^{P1} MIM ⁺¹)(SiS,O,)(SIO,O)(OH) 2024-043 <i>P4./n</i> Tsumeb Mine Namibia no Stonstotitte th Za,Ge(H), <t< td=""><td>Marsaalamite-(Y)^b</td><td>Y(MoQ₄)(OH)</td><td>2024-050</td><td>$P2_1/c$</td><td>Um Safi area</td><td>Favot</td><td>ves</td></t<>	Marsaalamite-(Y) ^b	Y(MoQ₄)(OH)	2024-050	$P2_1/c$	Um Safi area	Favot	ves
SlottaiteSrFe ¹ (PQ,J(SQ,J(OH), (Nb,g-Fe ¹)(PQ,J(SQ,J(OH), (Nb,g-Fe ¹)(PQ,J(SQ,J(OH), (Nb,g-Fe ¹)(PQ,J(SQ,J(OH), (PL))2024-051 R_{3m} Clara MineGermany (Paramy) rooNioboixolite-(Fe ¹⁺)(Nb,g-Fe ¹)(PQ,J(SQ,J(OF)(H,Q),, (PL))(SM,M,(Fe,TI)(PQ,J),(QF)(H,Q),, (QF)(H,Q),QF), (QF)(H,Q)	Hyblerite	$Pb_{i}Bi_{i}(SQ_{i})_{i}(CQ_{i})Q_{i}$	2024-052	Cmcm	Clara Mine	Germany	ves
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Slottaite	SrEe ³⁺ (PO ₄)(SO ₄)(OH) ₂	2024-051	R3m	Clara Mine	Germany	ves
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nioboixiolite-(Fe ³⁺)	(NbEe ³⁺)O-	2024-057	Phon	In den Dellen Quarry	Germany	no
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fluormacraeite	[(H, O)K]Mn (Fe Ti)(PO) (OF)(H, O) .4H O	2024-057	P2 /c	Lindner Mine	Germany	no
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Barronite	$(\square B_{2})(\square O_{1})$ Si O $(OH)(2H O_{1})$	2024-054	$\frac{72}{2}$	Krunkelbach denosit	Germany	VAS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Heimaevite	Na AI(SO)	2024 000	P3	Eldfell Volcano	Iceland	VOS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Rotemite	$C_{2} C_{1} (OH) CLAHO$	2023-1278	R3c	Hartrurim Complex	leraol	yes voc
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Belmonteite	$C_{4}C_{12}(OT)_{12}C_{12}^{-4}T_{12}O$	2024-030	Cmce	Gambatesa Mine	ltaly	yes voc
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Proto-owybeeite	$A \alpha P b S b S \omega$	2024-040	D2 /n	Monte Arsiccio Mine	Italy	yes no
Valiadoakasakate(CE) CaCe(V Hillin (3),2),(3),(3),(3),(3),(3),(3),(3),(3),(3),(3	Vanadoakasakaita (Co)	$Ag_{9}FD_{40}DJ_{45}D_{112}$	2024-021	FZ1/11 P2 /m	Monte Afsiccio Mine	lanan	110
Antaclastic $3_1_1_{1_2}_{1_2}_{1_2}_{1_2}(0,1)$ $2024-030$ 70000 70000 70000 70000 70000 70000 70000 700000 700000 7000000000 $7000000000000000000000000000000000000$	Amotorocuito		2024-044	FZ1/111 Eddd		Japan	110
SitematinitiePolley $G_3(D/L_3(R_2O)$ 2024-051P1Mottlezuna MinieMexicoyesNancyrossite $FeGeQ_sH_5$ 2024-049 PA_s/nbc Moctezuna MineNamibiayesZincostottite b $ZnGe(OH)_6$ 2024-024 PA_s/nbc Moctezuna MineNamibianoDubińskaite $Ca_sCc_2Al_s[Be_5is_0O_3](OH)_2$ 2024-035 $P1$ Jordanów ŚląskiPolandyesBoevskite $Pb_1(FO_3)_s(SO_3)(SO_3)$ 2024-044 $Pmma$ Boevskoe DepositRussiayesOlgafrankiteNi_3Ge2024-048 $Pm\overline{3}m$ Dzhaltul intrusionRussiayesOlgafrankiteNi_3Ge2024-042 $Pm\overline{3}m$ Dzhaltul intrusionRussiayesStibiosegnitite $Pb(Fe_2^+S)_5^+S_3^+(ASO_4)_2(OH)_6$ 2024-042 $Pna\overline{3}n$ Murzinskoe depositRussianoStibiosegnitite $Pb(Fe_2^+S)_5^+S_3^+(ASO_4)_2(OH)_6$ 2024-042 $Pna\overline{3}n$ Tolbachik VolcanoRussiayesZircarsite $Na_{12}Cu_{12}ZrO_8(ASO_4)_2(OH)_6$ 2024-025 $P321$ Šibeničný vrch depositSlovakianoClino-ferro-suenoite $[Ag_{2}Aus_{2}]_{0}Gy_{2}(OH)_{2}$ 2024-042 $Pa\overline{3}n$ Hilläng minesSwedennoZanellite $PbCu_2(ASO_4)(OH)_{3}$ 2023-020a $Pnma$ Chalttal depositSwitzerlandnoZanellite $PbCu_2(ASO_3)(OH)_{3}/(OF)F_{2}$ 2024-047 $P62c$ Långban depositSwitzerlandnoSvornostite-(Nd) $Ca_2(CaNd)Na_3Nb(Si_2O_2)_2(OF)F_{2}$	Changanfuita	$51_4 \Pi_6 51_4 O_{23}(OT)(CT)$	2024-030	ruuu	Mostoruma Mino	Mavica	yes
Statisetine Minimite O_{10} 2024-049 P_{42}/n Moteural Mine Mexico yes Statisetine P_{42}/n Tsumeb Mine Namibia no Dubińskaite $Ca_4Sc_3A_{14}[Be_5Si_03_{30}](OH)_2$ 2024-033 P_{42}/n Tsumeb Mine Namibia no Dubińskaite $Ca_4Sc_3A_{14}[Be_5Si_03_{30}](OH)_2$ 2024-035 P_1 Jordanów Śląski Poland yes Boevskie $Pb_4(TeO_3)_2(SO_4)(S_2O_3)$ 2024-041 $Pnma$ Boevskoe Deposit Russia yes Olgafrankte Ni_5Ge 2024-048 Pm_3^3m Dzhaltul intrusion Russia yes Ferroinnelite $Ba_4Ti_2Na(NaFe^2*)Ti(Si_2O_2)_2(SO_4)(PO_4)]O_2[O(OH)]$ 2024-029 P_1^T Kovdor Phlogopite Mine Russia no Stibiosegnitite $Pb(Fe_{25}^*Sb_{25}^*)(AsO_4)_2(OH)_6$ 2024-042 Pna_2 . Tolbachik Volcano Russia yes Zircarsite $Na_1c_{12}Ca_5(AsO_4)_2(CH)_6$ 2024-042 Pna_2 . Tolbachik Volcano Russia yes Zircarsite $Na_1c_{12}Ca_5(AsO_4)_2(GL)_2$ 2024-025 $P321$ Šibeničný vrch deposit Slovakia no Clino-ferro-suenoite $[Ag_9AuS_4][Ag_6As_5S_7]$ 2024-047 P_{62c} Långban deposit Sweden yes Metaheimite $PbCu_4(AsO_4)(OH)_3$ 2023-020a $Pnma$ Chalttal deposit Switzerland no Zarcarsite $Na_1Si_5(a_{227}Cl_3 2024-047 P_{62c} Långban deposit Switzerland no PbCu_4(AsO_4)(OH)_3$ 2023-020a $Pnma$ Chalttal deposit Switzerland no Zanellite $PbCu_6[AsO_{35}(OH)_{023},(AsO_{3})_2(OF)_5$ 2024-046 P_31m Dorozhniy pegmatite Tajikistan no Sovinostite-(Nd) $Ca_4(CaNd)Na_3Nb(Si_5O_2)_5(OF)_5$ 2024-046 P_31m Dorozhniy pegmatite Tajikistan no Svornostite-(NI, (NH_4)_2(MO_2)_2(SO_4)(H_2O)_8 2024-068 $Pmn2_1$ Blue Lizard Mine U.S.A. yes Wangyanite $PdN_{43}S_{55}$ 2024-068 $Pmn2_1$ Blue Lizard Mine U.S.A. yes Wangyanite $PdN_{43}S_{55}$ 2024-068 $Pmn2_1$ Blue Lizard Mine U.S.A. yes Szinagyite $NaCa_3(UO_2)_2(SO_4)_3(SeO_3)F(H_2O)_6$ 2024-063 R_32c Pickett Corral Mine U.S.A. yes Sziagyite $NaCa_3(UO_2)_2(CO_3)_3(SeO_3)F(H_2O)_6$ 2024-063 R_32c Pickett Corral Mine U.S.A. yes Sziagyite $NaCa_3(UO_2)_2(CO_3)_3(SeO_3)F(H_2O_6)_2$ 2024-063 R_32c Pickett Corral Mine U.S.A. yes Sziagyite $NaCa_3(UO_2)_2(CO_3)_3(SeO_3)F(H_2O_6)_$	Sheriyaniune	$M_{P}M_{P}T_{O}^{4+O}$	2024-031	PI D4 /phc	Moctezuma Mine	Mexico	yes
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nancuraccita		2024-049	P4 ₂ /110C	Moclezuma Mine	Nexico	yes
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			2024-055	P4 ₂ /II	Tsumeb Mine	Namibia	yes
DubinskalteCda_SC_2A_1(be_2)_{a}(S_{a})(DH)_22024-035P1Jordahow SiqskiPolandyesBoevskite $Pb_4(TeO_3)_2(SO_4)(S_2O_3)$ 2024-041 $Pnma$ Boevskoe DepositRussiayesBoevskiteNi_Ge2024-048 $Pm\overline{3}m$ Dzhaltul intrusionRussiayesFerroinnelite $Ba_4Ti_2Na(NaFe^{2+})Ti(Si_2O_7)_2[(SO_4)(PO_4)]O_2[O(OH)]2024-029PTKovdor Phlogopite MineRussianoStibiosegnititePb(Fe_2^{3}Sb_3^{*})(AsO_4)_2(DH)_62024-065R\overline{3}mMurzinskoe depositRussianoKantoriteK_2NaMg(SO_4)_2F2024-042Pna2_1Tolbachik VolcanoRussiayesZircarsiteNa_{16}Cu_12To_2(A(sO_4)_6C_62024-037Pm\overline{3}nTolbachik VolcanoRussiayesAuropearceite[Adg_4AuS_4][Ag_4S_5S_7]2024-042P121Sibeničný vrch depositSlovakianoClino-ferro-suenoite\square Mn_2^*Fe_3^*(Si_8O_{22})(OH)_22024-047P62cLångban depositSwedenyesMetaheimitePb_4Al_5I_6Q_2(CH)_32024-047P62cLångban depositSwitzerlandnoZanellitePbCu_9[AsO_{3,5}(H)_{0,3}](AsO_4)_2(H)_22024-047P62cLångban depositSwitzerlandyesNacareniobsite-(Nd)Ca_2(CaNd)Na_3Nb(Si_2O_2)_2(OF)F_22024-011C2/cGrosses Chalttal DepositSwitzerlandyesNacareniobsite-(Y)YA_1(B_{3,67}Si_{0,33}O_{10,67}2024-068Pmn2_1Blue Lizard MineU.S.A.<$	Zincostottite*		2024-024	P42/N	Isumed Mine	Namibia	no
boevsite $Pb_{a}(1eU_{3/2}(S)_{a}(15,U_{3}))$ $2024-041$ $Pnina$ boevsite DepositRussiayesOlgafrankiteNi_3Ge $2024-048$ $Pn\overline{3}m$ Dzhaltul intrusionRussiayesFerroinnelite ^b $Ba_{4}Ti_{2}Na(NaFe^{2+})Ti(Si_{2}O_{7})_{2}[(SO_{4})(PO_{4})]O_{2}[O(OH)]2024-029P\overline{1}Kovdor Phlogopite MineRussianoStibiosegnititePb(Fe_{35}^{2+}Sb_{53}^{2+})(AsO_{4})_{2}(OH)_{6}2024-025R\overline{3}mMurzinskoe depositRussianoKantoriteK_{k}NaMg(SO_{4})_{2}F2024-042Pna2_{1}Tolbachik VolcanoRussiayesAuropearceite[Ag_{As}AuS_{3}][Ag_{As}As_{5}]2024-025P321Šibeničný vrch depositSlovakianoClino-ferro-suenoite\Box Mn_{2}^{2+}Fe_{3}^{2+}(Si_{0}C_{22})(OH)_{2}2024-025P321Šibeničný vrch depositSlovakianoFriisitePb_{a}A_{1}Si_{0}a_{2}CI_{3}2024-027P62cLångban depositSwedenyesMetaheimitePbCu_{9}[AsO_{3}(OH)_{0,3}](ASO_{4})_{2}(OH)_{3}2024-047P62cLångban depositSwitzerlandnoZanelliitePbCu_{9}[AsO_{3}(OH)_{0,3}](ASO_{4})_{2}(OH)_{3}2024-047P62cLångban depositSwitzerlandnoNacareniobsite-(Nd)Ca_{2}(CaAdNA_{3}Mb(Si_{5}O_{7})_{2}(OF)F_{2}$ $2024-047$ $P62c$ Långban depositSwitzerlandnoSovornostite-(NH_4)(NH_4)_2(Mg(UO_{2})_{2}(ASO_{4})(DH)_{5}) $2024-061$ $C2/c$ Grosses Chalttal DepositSwitzerla	Dubinskaite	$Ca_4SC_2AI_4[Be_2SI_8O_{30}](OH)_2$	2024-035	PI	Jordanow Sląski	Poland	yes
OrgarankiteNs Ge2024-048PmsmDatatti IntrusionRussiayesFerroinnelite $Ba_4 Ti_2 Na(NaFe^3T) Ti(Si_2O_2)_{2}[(SO_4)(PO_4)] O_2[O(OH)]2024-029PTKovdor Phlogopite MineRussianoStibiosegnititePb(Fe_{32}^{*}Sb_{53}^{*})(AsO_{2})_{2}(OH)_{6}2024-025RTMurzinskoe depositRussianoKantoriteK_2NaMg(SO_4)_2F2024-042Pna2_1Tolbachik VolcanoRussiayesZircarsiteNa_{16}Cu_{12}Cro_6(AsO_4)_6CI_62024-037Pm3nTolbachik VolcanoRussiayesAuropearceite[Ag_9AuS_4][Ag_8As_2S_7]2024-025P321Šibeničný vrch depositSlovakianoClino-ferro-suenoite\Box Mn^2'Fe3t(Si 60_2)(OH)_22024-032C2/mHilläng minesSwedennoFriisitePb_6Al_5Si_8O_{27}Cl_32024-047P62cLångban depositSwitzerlandnoZanelliitePbCu_9(AsO_{3}(OH)_{63}](2AsO_4)_2(OH)_52024-012P2_1/cDara-Pioz alkaline massifTajikistannoNacareniobsite-(Nd)Ca_2(CaAM)Na_3Nb(Si_0)_2(OF)F22024-012P2_1/cDara-Pioz alkaline massifTajikistannoSvornostite-(NH_4)(NH_4)_2(UO_2)_2(SO_4)_4(H_2O)_82024-068Pmn2_1Blue Lizard MineU.S.A.yesWangyanitePdNi_8S_82024-062PTBurro MineU.S.A.yesVangyaniteHg_3(MoO_3)_5_22024-063R3cPickett Corral MineU.S.A.yesSz$	BOEVSKILE	$PD_4(1eO_3)_2(SO_4)(S_2O_3)$	2024-041	Phma	Boevskoe Deposit	Russia	yes
PerformenteBa, It_sNa(Nare*') II(St_2O_t_s)[CSU_4](Pd_1](D_2[O(DH)]2024-029P1Kovdor Phiogopite MineRussianoStibiosegnititePb(Fe_3^2S5B_3^*)(AsO_4)_2(OH)_62024-065R3mMurzinskoe depositRussianoStibiosegnititePk(Fe_3^2S5B_3^*)(AsO_4)_2(OH)_62024-065R3mMurzinskoe depositRussiayesZircarsiteNa16Cu1_2Zr08(AsO_4)_8CI_62024-037Pm3nTolbachik VolcanoRussiayesAuropearceite[Ag_9AuS_4][Ag_8As_2S_7]2024-025P321Šibeničný vrch depositSlovakianoClino-ferro-suenoite $\Box Mn_2^3$: Fe_3^*(Is_0O_2)(OH)_22024-047P62cLångban depositSwedenyesMetaheimitePbCu_9(AsO_4)(OH)_32023-020aPnmaChalttal depositSwitzerlandyesNacareniobsite-(Nd)Ca_2(CaNd)Na_3Nb(Si_2O_7)_2(OF)F_22024-046P31mDorozhniy pegmatiteTajikistannoSvorostite-(NH_4)(NH_4)_2(Mg(UO_2)_5(S0_4)(H_2O)_82024-068Pm2_1Bluro MineU.S.A.yesAmurselite(NH_4)_2(UO_2)_5(S0_4)_1(H_2O)_82024-062P1Burro MineU.S.A.yesAmurseliteHg_3(Moo4)_5_22024-063R3mJohns-Manville ReefU.S.A.yesAlexearliteHg_3(Moo4)_5_22024-063R3cPickett Corral MineU.S.A.yes	Olgafrankite		2024-048	Pm3m	Dznaitul Intrusion	Russia	yes
StibiosegnititePD(Fe_{25}^{*} SD $_{53}^{*}$)(ASQJ $_{23}^{*}$ (UH) $_{6}$ 2024-065R3mMutzinskoe depositRussianoKantorite K_2 NaMg(SQ) $_{2}$ F2024-042 Pna_{21} Tolbachik VolcanoRussiayesAuropearceite $[Ag_{9}AuS_{4}][Ag_{6}AsQ_{5}_{7}]$ 2024-025 $P321$ Šibeničný vrch depositSlovakianoClino-ferro-suenoite $\Box Mn_{2}^{*}$ Fe $_{2}^{*}$ (Si ₈ O ₂₂)(OH) $_{2}$ 2024-032 $C2/m$ Hilläng minesSwedennoFriisite $Pb_{4}Al_{5}Si_{6}O_{27}Cl_{3}$ 2024-047 $P62c$ Långban depositSwedenyesMetaheimite $PbCu_{2}(AsO_{4})(OH)_{3}$ 2023-020a $Pnma$ Chalttal depositSwitzerlandnoZanellite $PbCu_{9}(AsO_{3,5}(OH)_{5,5})(AsO_{4})(OH)_{5}$ 2024-061 $C2/c$ Grosses Chalttal DepositSwitzerlandyesNacareniobsite-(Nd)Ca_2(CaAlN)Na_3Nb(Si_2O_7)_2(OF)F_22024-061 $P2_1/c$ Darai-Pioz alkaline massifTajikistannoSvornostite-(NH_4)(NH_4)_2(Mg(UO_2)_5(Qs)_4)(H_2O)_82024-068 $Pmn2_1$ Blue Lizard MineU.S.A.noAmurselite(NH_4)_2(D_3)_2(CH)_2(L_2O)-8H_2O2024-062 PT Burro MineU.S.A.yesAlexearliteHg_3(MoO_3)_522024-063 $R3c$ Pickett Corral MineU.S.A.yesSzilagyiteNACa_3(UO_2)(CO_3)_3(SeO_3)F(H_2O_62024-063 $R3c$ Pickett Corral MineU.S.A.yes	Ferroinnelite	$Ba_4 II_2 Na(NaFe^{2+}) II(SI_2 O_7)_2[(SO_4)(PO_4)]O_2[O(OH)]$	2024-029	P1	Kovdor Phiogopite Mine	Russia	no
KantoriteK ₂ NAM(g(SU_4) ₂) ₂ F2024-042 Pnd_{21} Iolbachik VoicanoRussiayesZircarsiteNa ₁₆ Cu ₁₂ ZrO ₈ (ASO ₄) ₆ Cl ₆ 2024-037 $Pm3n$ Tolbachik VoicanoRussiayesAuropearceite $[Ag_{2}Au5_4][Ag_{4}As_5,5]$ 2024-025 $P331$ Šibeničný vrch depositSlovakianoClino-ferro-suenoite $\Box Mn_2^*Fe_2^*(Si_8O_{22})(OH)_2$ 2024-025 $P321$ Šibeničný vrch depositSlovakianoFriisite $Pb_8A_5Si_8O_{22}(CH)_2$ 2024-047 $P62c$ Långban depositSwedenyesMetaheimite $PbCu_9(AsO_3(OH)_{0.3})(AsO_4)_2(OH)_9(H_2O)_3$ 2023-020a $Pnma$ Chalttal depositSwitzerlandnoZanelliite $PbCu_9(AsO_{3.5}(OH)_{0.3})(AsO_4)_2(OH)_9(H_2O)_3$ 2024-061 $C2/c$ Grosses Chalttal DepositSwitzerlandnoNacareniobsite-(Nd)Ca2(CaNd)Na_3Nb(Si_2O_2)_2(OF)F_22024-046 $P31m$ Dorozhniy pegmatiteTajikistannoSvornostite-(NH_4)(NH_4)_2(Mg(UO_2)_5(SO_4)(H_1O)_82024-068 $Pmn2_1$ Blue Lizard MineU.S.A.noAmurselite(NH_4)_2(D_2)_5(SO_4)_1(H_2O)-8H_2O2024-062 $P\overline1$ Burro MineU.S.A.yesAlexearliteHg_3(MoO_3)_5_22024-039 $Pnma$ Lucky Boy MineU.S.A.yesSzilagyiteNACa_2(UO_2)_3(SO_2)_5(H_2O_6)2024-063 $R3c$ Pickett Corral MineU.S.A.yes	Stiblosegnitite	$PD(Fe_{2,5}^{2}SD_{0,5}^{3})(AsO_{4})_{2}(OH)_{6}$	2024-065	кзт	Murzinskoe deposit	Russia	no
ZircarsiteNa (Ag,QL)2C102(ASQL)2C162024-037Pm3nTollbachik VoicanoRussiayesAuropearceite $[Ag,AuS_3][Ag,As_2S_7]$ 2024-025P321Šibeničný vrch depositSlovakianoClino-ferro-suenoite $\Box Mn^2$; Fe ³ ; (SigO ₂₂)(OH)22024-025P321Šibeničný vrch depositSlovakianoFriisitePb ₈ Al_5igO ₂₂ , Cl ₃ 2024-047P62cLångban depositSwedenyesMetaheimitePbCu_3(ASO_4)(OH)32023-020aPnmaChalttal depositSwitzerlandnoZanelliitePbCu_9[AsO_3(OH)o_5]2(ASO_4)2(OH)(H_2O)32024-061C2/cGrosses Chalttal DepositSwitzerlandyesNacareniobsite-(Nd)Ca_2(CaNdN)Na_Nb(Sic_0,O)2(OF)F22024-012P2_1/cDara-Pioz alkaline massifTajikistannoSvornostite-(NH_4)(NH_4)2(Mg(UO_2)_2(SO_4)_4(H_2O)82024-068Pmn2_1Blue Lizard MineU.S.A.noSvornostite-(NH_4)(NH_4)2(D2)_3(SeO_3),O2(OH)2(H_2O)-8H_2O2024-062PTBurro MineU.S.A.yesWangyanitePdNigS82024-063Fm3mJohns-Manville ReefU.S.A.yesSzilagyiteNACa_3(UO_2)(CO_3)_3(SeO_3);F(H_2O_62024-063R3cPickett Corral MineU.S.A.yes	Kantorite	K ₂ NaMg(SO ₄) ₂ F	2024-042	Pna ₂	Iolbachik Volcano	Russia	yes
Auropearceite $[Ag_{3}AUs_{4}]Ag_{6}As_{5}s_{7}]$ $2024-025$ $P321$ Sibenicity vitch depositSlovakianoClino-ferro-suenoite $\Box Mn_{2}^{2+}Fe_{5}^{2+}(Si_{8}O_{22})(OH)_{2}$ $2024-032$ $C2/m$ Hilläng minesSwedennoPisatiPbcu_{2}(AsO_{4})(OH)_{3} $2024-032$ $C2/m$ Hilläng minesSwedenyesMetaheimitePbCu_{2}(AsO_{4})(OH)_{3} $2023-020a$ PnmaChalttal depositSwitzerlandnoZanelliitePbCu_{3}(AsO_{4})_{2}(OH)_{0,5}]_{2}(AsO_{4})_{2}(OH)_{9}(H_{2}O)_{3} $2024-061$ $C2/c$ Grosses Chalttal DepositSwitzerlandyesNacareniobsite-(Nd)Ca_{2}(CaNd)Na_{3}Nb(Si_{2}O_{7})_{2}(OF)F_{2} $2024-046$ $P31m$ Dorozhniy pegmatiteTajikistannoSvornostite-(NH_4)(NH_4)_2(MQO_2)_{2}(SO_4)_{4}(H_2O)_{8} $2024-068$ $Pmn2_1$ Blue Lizard MineU.S.A.yesWangyanite(NH_4)_2(QO_2)_{2}(SO_4)_{4}(H_2O)_{8}H_2O $2024-062$ $P1$ Burro MineU.S.A.yesAlexearliteHg_3(MoO_4)S_2 $2024-039$ PnmaLucky Boy MineU.S.A.yesSzilagyiteNaCa_3(UO_2)_{2}(SO_4)_{3}(SeO_3)_{7}(H_{4}O_{6}) $2024-063$ $B3c$ Pickett Corral MineU.S.A.yes	Zircarsite	$Na_{18}Cu_{12}ZrO_8(AsO_4)_8CI_6$	2024-037	Pm3n	Iolbachik Volcano	Russia	yes
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Auropearceite	$[Ag_9AuS_4][Ag_6As_2S_7]$	2024-025	P321	Sibenicny vrch deposit	Slovakia	no
Friiste $Pb_{eAl_3b_4O_2r_cL_3}$ $2024-047$ $P62c$ Langban depositSwedenyesMetaheimite $PbCu_2(AsO_4)(OH)_3$ $2023-020a$ $Pnma$ Chalttal depositSwitzerlandnoZanelliite $PbCu_2(AsO_4)(OH)_{03,12}(AsO_4)_2(OH)_9(H_2O)_3$ $2024-061$ $C2/c$ Grosses Chalttal DepositSwitzerlandyesNacareniobsite-(Nd)Ca_2(CaNd)Na_3Nb(Si_2O_7)_2(OF)F_2 $2024-061$ $P2_1/c$ Darai-Pioz alkaline massifTajikistannoPeprossiite-(Y)YAl_2(B_{3,67}Si_{0,33})O_{10,67} $2024-066$ $P31m$ Dorozhniy pegmatiteTajikistannoSvornostite-(NH_4)(NH_4)_2(Mg(UO_2)_2(SO_4)_4(H_2O)_8 $2024-068$ $Pmn2_1$ Blue Lizard MineU.S.A.noAmurselite(NH_4)_0(D_2)_5(SO_4)_0(H_2O)-8H_2O $2024-062$ $P\overline{1}$ Burro MineU.S.A.yesAlexearliteHg_3(MoO_3)_{52} $2024-039$ PnmaLucky Boy MineU.S.A.yesSzilagyiteNaCa_3(UO_2)(CO_3)_3(SeO_3)F(H_2O_6) $2024-063$ $B3c$ Pickett Corral MineU.S.A.yes	Clino-ferro-suenoite	$\Box Mn_2^{++} Fe_5^{++} (Si_8O_{22}) (OH)_2$	2024-032	C2/m	Hillang mines	Sweden	no
MetaheimitePbCu2(ASO4)(OH)32023-020aPmmaChalttal depositSwitzerlandnoZanelliitePbCu9(ASO4)(OH)32024-061C2/cGrosses Chalttal DepositSwitzerlandnoNacareniobsite-(Nd)Ca2(CaNd)Na3Nb(5)(2,0)-(OF)F22024-061C2/cGrosses Chalttal DepositSwitzerlandnoPeprossiite-(Y)YAl2(B3675633)O10672024-012P2_/cDarai-Pioz alkaline massifTajikistannoSvornostite-(NH4)(NH4)2(B02)2(SO4)4(H-O)82024-068Pmm21Blue Lizard MineU.S.A.noAmurselite(NH4)2(D02)2(SO4)4(H-O)-8H2O2024-062PTBurro MineU.S.A.yesWangyanitePdNi8582024-008aFm3mJohns-Manville ReefU.S.A.yesSzilagyiiteHg3(MO0,)522024-063R3cPickett Corral MineU.S.A.yes	Friisite	Pb ₈ Al ₃ Si ₈ O ₂₇ Cl ₃	2024-047	P62c	Långban deposit	Sweden	yes
ZanellitePbCu ₉ [AsO3 ₃₅ (OH) ₉ (J ₂ (ASO ₄) ₂ (OH) ₉ (H ₂ O) ₃ 2024-061C2/cGrosses Chalttal DepositSwitzerlandyesNacareniobsite-(Nd)Ca ₂ (CaNd)Na ₃ Nb(Si ₂ O ₇) ₂ (OF)F ₂ 2024-012 $P_{2_1/c}$ Darai-Pioz alkaline massifTajikistannoPeprossiite-(Y)YAl ₂ (B ₃₆₇ Si ₀₃₃ O ₁₀₆₇ 2024-066 $P\overline{3}1m$ Dorozhniy pegmatiteTajikistannoSvornostite-(NH ₄)(NH ₄) ₂ (UO ₂) ₂ (SO ₄) ₄ (H ₂ O) ₈ 2024-068 $Pmn2_1$ Blue Lizard MineU.S.A.noAmurselite(NH ₄) ₂ (UO ₂) ₅ (SeO ₃) ₃ O ₂ (OH) ₂ (H ₂ O) ₈ H ₂ O2024-068 $P\overline{m}\overline{3}m$ Johns-Manville ReefU.S.A.yesWangyanitePdNi ₈ S ₈ 2024-008a $Fm\overline{3}m$ Johns-Manville ReefU.S.A.yesSzilagyiteHg ₃ (MoO ₄)S ₂ 2024-063 $R3c$ Pickett Corral MineU.S.A.yes	Metaheimite	PbCu ₂ (AsO ₄)(OH) ₃	2023-020a	Pnma	Chalttal deposit	Switzerland	no
Nacareniobsite-(Nd)Ca2(CaNd)Na3Nb(Si_2O_7)2(OF)F22024-012 $P_{2.}/c$ Darai-Pioz alkaline massifTajikistannoPeprossiite-(Y)YA12(B3a7Si033)O10672024-046 $P31m$ Dorozhniy pegmatiteTajikistannoSvornostite-(NH4)(NH4)2Mg(UO2)2(SO4)4(H2O)82024-068 $Pmn2_1$ Blue Lizard MineU.S.A.yesAmurselite(NH4)2(UO2)2(SO4)3(H2O)8H2O2024-062 $P\overline{1}$ Burro MineU.S.A.yesWangyanitePANi8582024-008a $Fm\overline{3}m$ Johns-Manville ReefU.S.A.yesAlexearliteHg3(MoO4)S22024-039PnmaLucky Boy MineU.S.A.yesSzilagyiteNaCa3(UO2)(CO3)3(SeO3)F(H2O)62024-063 $R3c$ Pickett Corral MineU.S.A.yes	Zanelliite	$PbCu_{9}[AsO_{3.5}(OH)_{0.5}]_{2}(AsO_{4})_{2}(OH)_{9}(H_{2}O)_{3}$	2024-061	C2/c	Grosses Chalttal Deposit	Switzerland	yes
Peprossitte-(Y)YAI ₂ (B325Si33)O10672024-046P31mDorozhniy pegmatiteTajikistannoSvornostite-(NH4) $(NH_4)_2(Mg(D2)_2(SO_4)_4(H_2O)_8)$ 2024-068 $Pm2_1$ Blue Lizard MineU.S.A.noAmurselite $(NH_4)_2(SO_3)_3O_2(OH)_2(H_2O)_8H_2O$ 2024-062 $P\overline{1}$ Burro MineU.S.A.yesWangyanitePANis582024-008a $Fm\overline{3}m$ Johns-Manville ReefU.S.A.yesAlexearliteHg3(MoO_4)S22024-063PnmaLucky Boy MineU.S.A.yesSzilagyiteNACa3(UO_2)(CO_3)_3(SeO_3)F(H_2O)_62024-063 $R3c$ Pickett Corral MineU.S.A.yes	Nacareniobsite-(Nd)	$Ca_2(CaNd)Na_3Nb(Si_2O_7)_2(OF)F_2$	2024-012	$P2_1/c$	Darai-Pioz alkaline massif	Tajikistan	no
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Peprossiite-(Y)	YAI ₂ (B _{3.67} Si _{0.33})O _{10.67}	2024-046	P31m	Dorozhniy pegmatite	Tajikistan	no
Amurselite $(NH_4)_2(UO_2)_5(SeO_3)_3O_2(OH)_2(H_2O) \cdot 8H_2O$ $2024-062$ $P1$ Burro MineU.S.A.yesWangyanite $PdNi_8S_8$ $2024-008a$ $Fm3m$ Johns-Manville ReefU.S.A.yesAlexearlite $Hg_3(MOO_4)S_2$ $2024-039$ $Pnma$ Lucky Boy MineU.S.A.yesSzilagyiite $NaCa_3(UO_2)(CO_3)_3(SeO_3)F(H_2O)_6$ $2024-063$ $R3c$ Pickett Corral MineU.S.A.yes	Svornostite-(NH ₄)	$(NH_4)_2Mg(UO_2)_2(SO_4)_4(H_2O)_8$	2024-068	Pm <u>n</u> 2₁	Blue Lizard Mine	U.S.A.	no
Wangyanite PdNi ₈ S ₈ 2024-008a Fm3m Johns-Manville Reef U.S.A. yes Alexearlite Hg ₃ (MoO ₄)S ₂ 2024-039 Pnma Lucky Boy Mine U.S.A. yes Szilagyiite NaCa ₃ (UO ₂)(CO ₃) ₃ (SeO ₃)F(H ₂ O) ₆ 2024-063 R3c Pickett Corral Mine U.S.A. yes	Amurselite	$(NH_4)_2(UO_2)_5(SeO_3)_3O_2(OH)_2(H_2O).8H_2O$	2024-062	P <u>1</u>	Burro Mine	U.S.A.	yes
Alexearlite Hg ₃ (MoO ₄)S ₂ 2024-039 Pnma Lucky Boy Mine U.S.A. yes Szilagyiite NaCa ₃ (UO ₂)(CO ₃) ₃ (SeO ₃)F(H ₂ O) ₆ 2024-063 R3c Pickett Corral Mine U.S.A. yes	Wangyanite	PdNi ₈ S ₈	2024-008a	Fm3m	Johns-Manville Reef	U.S.A.	yes
Szilagyiite NaCa ₃ (UO ₂)(CO ₃) ₃ (SeO ₃)F(H ₂ O) ₆ 2024-063 R3c Pickett Corral Mine U.S.A. yes	Alexearlite	Hg ₃ (MoO ₄)S ₂	2024-039	Pnma	Lucky Boy Mine	U.S.A.	yes
	Szilagyiite	$NaCa_3(UO_2)(CO_3)_3(SeO_3)F(H_2O)_6$	2024-063	<u>R</u> 3c	Pickett Corral Mine	U.S.A.	yes
Yellowcatite [®] KNaFe ³⁺ (Se ⁺⁺ O ₃) ₂ ($V_2^{2+}O_3$)·7H ₂ O 2024-030 P6m ² School Section #32 Mine U.S.A. yes	Yellowcatite ^b	$KNaFe_{2}^{3+}(Se^{4+}O_{3})_{2}(V_{2}^{5+}O_{7})\cdot 7H_{2}O$	2024-030	P6 <u>m</u> 2	School Section #32 Mine	U.S.A.	yes
Stunorthropite (NH ₄) ₄ [Mo ₂ O ₆ (MoO ₄) ₂] 2024-064 P1 Summit group of claims U.S.A. yes	Stunorthropite	$(NH_4)_4[Mo_2O_6(MoO_4)_2]$	2024-064	<i>P</i> 1	Summit group of claims	U.S.A.	yes

Notes: The type locality names have been simplified for readability and are organized by country of origin. The "New RN" column conveys which mineral names introduce a new root name.

^a All minerals have been approved by the IMA-CNMNC. For a complete listing of all IMA-validated unnamed minerals and their codes, see http://cnmnc.units.it/ (click on "IMA list of minerals"). The data contained within this chart were derived from Newsletters 81–83 (Bosi et al. 2024e–f, 2025), individual references for each mineral can be found within. ^b Published or in press (as of February 2025).

contain both Mo and a rare earth element as defining constituents. Marsaalamite-(Y) was encountered at Um Safi as inclusions and intergrowths with an F-rich "zinnwaldite" (polylithionite-siderophyllite series) in a greisen alteration assemblage within an F-rich granite. Although its environment is very rich in F, marsaalamite-(Y) is proposed to have formed after available F was depleted by earlier phases including "zinnwaldite," fluorite, and F-bearing rare earth element minerals—explaining why marsaalamite-(Y) formed rather than a phase equivalent to its F analog (Mahdy et al. 2025). Marsaalamite-(Y) type material was unsuitable for a single-crystal X-ray diffraction study, and the unit cell of the new mineral was determined through powder X-ray diffraction. Marsaalamite-(Y) crystallizes in space group $P2_1/c$ with cell parameters a = 5.1863(7), b = 12.3203(11), c =6.6953(7) Å, $\beta = 114.173(8)^\circ$, V = 390.30(8) Å³, Z = 4.

Stankeithite, Mn²⁺Mn²⁺Te⁴⁺O₁₀

The new mineral stankeithite (IMA2024-049, Stnk), $Mn^{2+}Mn^{2+}Te_4^{++}O_{10}$, is a new MnMn analog of denningite (CaMn²⁺Te_4^{++}O_{10}) discovered at the Moctezuma Mine in Sonora, Mexico. Denningite was also first discov-

ered at the Moctezuma Mine and published by Mandarino et al. (1963). The Moctezuma Mine hosts epithermal quartz veins that contain gold, baryte, and high Te concentrations (ca. 1942 ppm Te; Deen and Atkinson 1988). The remobilization of Te at the Moctezuma Mine has resulted in the formation of nearly 30 additional secondary Te minerals, 16 of which were first discovered here. Two other minerals, bambollaite and rozhdestvenskayaite-(Zn), were also first discovered at the Moctezuma Mine. Like denningite, stankeithite is tetragonal with space group symmetry $P4_2/nbc$ and has the cell parameters a = 8.7694(4) and c = 12.9687(8) Å. Stankeithite was named for Arizona geologist and mineral collector Stanley Keith.

Zincostottite, ZnGe4+(OH)6

Zincostottite (IMA2024-024, Zsto) is a new non-stoichiometric perovskite supergroup mineral from the Tsumeb Mine, Oshikoto, Namibia. A full description was provided by Kampf et al. (2025a). The new mineral was found as a secondary phase alongside siderite, malachite, and quartz on fracture surfaces in a Ge-rich sulfide ore assemblage con-

New Minerals Approved (2024)

FIGURE 1. World map with localities of new minerals plotted as red circles with transparency. The size of the circle relates to the number of new minerals (approved in 2024) that were found within a 1-decimal degree radius determined using Euclidean distances. This is to emphasize areas that produced multiple minerals that were approved in 2024. Some prolific areas are further enumerated with callouts.

sisting of germanite, bornite, chalcocite, and tennantite-(Zn) (Kampf et al. 2025a). Zincostottite crystals on the type specimens are translucent and yellowish in color and appear to have been strongly etched after formation (Kampf et al. 2025a). Zincostottite has the ideal chemistry ZnGe⁴⁺(OH)₆ and its structure has $P4_2/n$ symmetry with cell parameters a = 7.4522(18) and c = 7.4000(8) Å, V = 411.0(2) Å³, Z = 4. As the name suggests, the new mineral is the Zn analog of stottite, Fe²⁺Ge⁴⁺(OH)₆, also discovered at the Tsumeb Mine. The Tsumeb Mine is a unique hotspot for Ge mineralization. With the addition of zincostottite, nancyrossite $(Fe^{3+}Ge^{4+}O_6H_5)$, and karlseifertite $[Pb(Ga_2Ge)(AsO_4)_2(OH)_6]$ in 2024, there are now 16 Ge minerals for which the Tsumeb Mine is the type locality out of 41 total minerals with essential Ge. Of the 41 known Ge minerals, 23 are found at Tsumeb and 14 of these remain undocumented elsewhere as of the time of writing (www.Mindat.org). Apart from the Ge perovskite supergroup minerals stottite, zincostottite, and nancyrossite, the Tsumeb Mine is also the type (and, at present, only) locality for söhngeite, a Ga(OH)3 perovskite.

Yellowcatite, $KNaFe_2^{3+}(Se^{4+}O_3)_2(V_2^{5+}O_7)\cdot 7H_2O$

Yellowcatite (IMA2024-30, Yel) is a new post-mining mineral discovered at the School Section #32 Mine in Utah, U.S.A., and described by Kampf et al. (2025b). The mineral is named for the Yellow Cat Mesa where the type locality is and for the Yellow Cat Road located above the underground workings of the School Section #32 Mine. The chemistry of yellowcatite is unusual in that there is a combination of Se and V as essential elements. These components form Se⁴⁺O₃ trigonal pyramids and V⁵⁺O₄ tetrahedra, respectively, within a heteropolyhedral sheet that is the major architectural component of the structure. Heteropolyhedral sheets in this novel structure are linked along *c* through hydrogen bonds with cross-linking Na(H₂O)₆ octahedra. The layered structure no doubt gives rise to the platy habit of yellowcatite crystals. Yellowcatite has a hexagonal cell with $P\overline{6}m2$ space group symmetry and cell parameters a = 5.4966(7) and c = 17.2109(16) Å (Z = 1). It is surprising that a mineral with coexisting Se and V was only recently discovered, given that these elements are present within coexisting secondary minerals elsewhere in the Colorado Plateau, such as at the Burro Mine—where volborthite $[Cu_3(V_2O_7)(OH)_2 \cdot 2H_2O]$ is found in association with Se minerals such as chalcomenite $[Cu(SeO_3) \cdot 2H_2O]$ (Kampf et al. 2022).

Barronite, (D1.5Ba0.5)(UO2)2Si5O12(OH)·2H2O

Barronite (IMA2024-053, Barr) is a new weeksite-like uranyl silicate mineral from the Krunkelbach Valley Uranium deposit, Baden-Württemberg, Germany. The Menzenschwand region is a relatively prolific locality for uranyl minerals, with more than 40 different species discovered there to date and serving as the type locality for eight, including metauranocircite, joliotite, arsenuranospathite, uranosilite, uranotungsite, arsenovanmeersscheite, nielsbohrite, and heisenbergite. Being structurally related to weeksite, K₂(UO₂)₂(Si₅O₁₃)·4H₂O, barronite is its "keno" analog with significant interlayer vacancy and partial protonation of silicate O to account for charge imbalance. In the revised structure of a Ba-bearing weeksite by Fejfarová et al. (2012), K⁺ and Ba2+ occupy the same two interlayer sites, and these authors report the empirical formula (K_{1.03}□_{0.46}Ba_{0.21}Na_{0.18}Ca_{0.12})₂(UO₂)₂(Si_{5.03}O₁₃)·4H₂O (re-written to indicate vacancy), supported by thermogravimetric analyses and an untwinned structure. The twinned "orthorhombic" weeksite of Jackson and Burns (2001) gave an empirical formula with significantly less H₂O pfu, (K_{1.05} $\square_{0.56}Ba_{0.25}Na_{0.02}Ca_{0.12})_2$ (UO₂)₂(Si_{5.07}O_{12.38})·1.46H₂O, closer to that of barronite. Unlike most uranyl minerals that bear sheet-like structural units, weeksite and barronite are open frameworks formed by crosslinking uranyl polyhedra and silicate tetrahedra, with cations and H2O groups located in channels. The new mineral formed from supergene processes, occurring as radial and globular aggregates of acicular, pale yellow crystals within abundant baryte (source of Ba), quartz, and associated with other secondary uranyl silicates, arsenates, and phosphates.

RECENTLY PUBLISHED

This section includes some of the new minerals approved in recent years that have been published (or entered press) since September 2024.

Ferroinnelite, $Ba_4Ti_2Na(NaFe^{2+})Ti(Si_2O_7)_2[(SO_4)(PO_4)] O_2[O(OH)]$

Ferroinnelite (IMA2024-029, Finn), ideally Ba₄Ti₂Na(NaFe²⁺) Ti(Si₂O₇)₂[(SO₄)(PO₄)]O₂[O(OH)], is a new member of the lamprophyllite group (seidozerite supergroup) from the Kovdor Massif in Murmansk Oblast, Russia. The new mineral occurs as transparent brown crystals to ca. 0.15 mm in agpaitic pegmatite alongside cancrinite, orthoclase, and aegirine-augite, among other minerals (Sokolova et al. 2025). Ferroinnelite is one of a very small number of minerals that bears Ti4+ in fivefold coordination. Other minerals with fivefold-coordinated Ti include fresnoite, alfredcasparite, and other members of the lamprophyllite group, such as innelite. Ferroinnelite is related to innelite by the substitution of Fe^{2+} for Mn^{2+} at one of the octahedral metal sites (M3), hence its name. The investigation of ferroinnelite carried out by Sokolova et al. (2025) led to the identification of (nonessential) H₂O in addition to OH groups within the structures of both ferroinnelite and innelite. The IMA-CNMNC formulae for other lampyophyllite group minerals, including shkatulkalite [Na2Nb2Na3Ti(Si2O7)2O2(FO)(H2O)4(H2O)3] and zvyaginite [Na₂ZnTiNb₂(Si₂O₇)₂O₂(OH)₂(H₂O)₄], contain essential H₂O groups.

Alfredcasparite, Sr₂TiO(Si₂O₇)

The new mineral alfredcasparite (IMA2023-024, Afc), ideally Sr₂TiO(Si₂O₇), is a new sorosilicate mineral discovered in an unusual xenolithic assemblage at the Caspar Quarry in western Germany (Juroszek et al. 2024). The scarcity and small grain size of the type material made direct crystal structure solution of alfredcasparite infeasible. The new mineral was identified as the Sr analog of fresnoite, Ba₂TiO(Si₂O₇), through a combination of electron microprobe and electron backscattered diffraction, confirming its similarity in chemistry and structure to fresnoite. Alfredcasparite occurs alongside grains of a potentially new Sr-silicate mineral in intergranular cracks and spaces within a matrix of mostly potassium feldspar, wollastonite, and diopside (Juroszek et al. 2024). The xenolith where alfredcasparite was found is also noteworthy for being the first occurrence of wesselsite, SrCuSi₄O₁₀, found outside of its type locality: the Wessels Mine in South Africa. Alfredcasparite is named for the owner and namesake of the type locality: Alfred Caspar (1926-2022).

Nannoniite, Al₂(OH)₅F

The unnamed mineral first reported from the Francon Quarry in Canada and formerly known as "UM1990-28:OHF:Al" was recently approved under the name nannoniite (IMA2024-010, Nnn) following the recognition of additional material at the Le Cetine di Cotorniano Mine in Italy and the application of new analytical techniques that permitted the solution of the crystal structure (Biagioni et al. 2024). This mineral was first reported by Sabina et al. (1968) in the type description of weloganite as an unidentified mineral that yielded a powder X-ray diffraction pattern similar to that of gibbsite. Sabina et al. (1968) also mentioned that the mineral had been found on one sample from the nearby Miron Quarry. Interestingly, although nannoniite is only presently known from just four localities, it is relatively common at two of them. Nannoniite is extremely widespread at the Francon Quarry and is present on or associated with most samples of weloganite. Likewise, Biagioni et al. (2024) note that nannoniite is widespread in cavities within silicified limestone at the Italian type locality. The phase was first described in detail by Jambor et al. (1990) with optical properties, major elements (measured by electron microprobe), powder X-ray diffraction with unit-cell determination, and thermogravimetry data, although it was not submitted to the IMA-CNMNC for consideration as a new species. While the powder X-ray diffraction data of Francon nannoniite could be indexed with a gibbsite cell (owing to the homologous relationship between these two species), the structure was noted to be distinct from that of gibbsite even though it could not be solved with direct methods. Due to the ordering of F and OH being important for distinguishing nannoniite from gibbsite, a full structure solution was crucial to defining nannoniite as a unique species. Solving the structure of this mineral still proved difficult for Biagioni et al. (2024), although these authors prevailed through the use of threedimensional electron diffraction. The structure reported by Biagioni et al. (2024) has $P2_1/b$ symmetry and cell parameters a = 8.688(3), b =5.024(2), c = 9.734(4) Å, and $\beta = 90.77(2)^{\circ}$. These cell parameters are very similar to the cell indexed by Jambor et al. (1990) with a = 8.66, b = 4.99, c = 9.67 Å, and $\beta = 92.12^{\circ}$. Although Biagioni et al. (2024) chose not to study Francon nannoniite while working on material from the Le Cetine di Cotorniano Mine, the similarity in the data reported by Jambor et al. (1990) and Biagoni et al. (2024) unambiguously confirms that UM1990-28-OHF: Al and nannoniite are synonymous. Nannoniite is named for the Italian mineral collector Roberto Nannonii (1943-2022).

Dacostaite, K(Mg₂Al)[Mg(H₂O)₆]₂(AsO₄)₂F₆·2H₂O

Dacostaite (IMA2024-015, Dcs) is another new mineral described from the Le Cetine di Cotorniano Mine in Italy. The new mineral occurs as rosettes of white pseudo-hexagonal plates in association with sulfur, gypsum, quartz, and an unidentified pharmacosiderite-like mineral. It is extremely rare; fewer than 10 specimens were known when the description was published (Biagioni et al. 2025). Dacostaite is monoclinic; C2/m, a = 12.474(5), b = 7.198(3), c = 13.724(6) Å, and $\beta = 99.518(13)^{\circ}$. Its crystal structure is novel but incorporates motifs that have been observed in other minerals. The overall architecture of dacostaite consists of heteropolyhedral sheets with a crandallite-like honeycomb configuration of Al(F,OH)₆ octahedra decorated at triple junctions by AsO₄ tetrahedra. The AsO4 tetrahedra link to outer Mg(H2O)6 octahedra by accepting three hydrogen bonds from H2O bound to Mg that laterally link the triangular faces of an AsO4 tetrahedron and a Mg(H2O)6 octahedron. A disordered K site is located in the honeycomb space. Each heteropolyhedral sheet unit is linked to the next along c through hydrogen bonds between interlayer and Mg-bound H2O molecules. Dacostaite is named for the Italian mineral collector Angelo Da Costa (1940-2022).

Hoperanchite, (NH₄)₂(S₂O₃)

Hoperanchite is a new combustion condensate mineral named for its place of discovery at Hope Ranch on the California coast, U.S.A. (IMA2024-017, Hpr). Although new to the mineralogical community, this mineral represents natural ammonium thiosulfate-a highly soluble salt well-known as a consumer product with uses as a photographic fixer salt and an alternative to cyanide-based compounds in gold leaching. Ammonium thiosulfate has further applications in chemistry and biological research. Hoperanchite is, therefore, one of a very small number of new minerals that can be purchased in bulk on the internet at the time of its approval as a new mineral species. Hoperanchite has the same structure as synthetic ammonium thiosulfate with C2 symmetry and cell parameters a = 10.2313(5), b = 6.4998(3), c = 8.8098(6) Å, and β = 94.611(7)° for a Z = 4 cell. Natural ammonium thiosulfate was found in burning landslide talus composed of bituminous and/or kerogenous shales and sandstones of the Miocene-aged Monterey Formation (Kampf et al. 2025c). Material exposed from the landslide is porous, and exposure to oxygen resulted in rapid weathering of minerals such as pyrite that have exothermic oxidation reactions. Thermal insulation resulted in the buildup of heat to the point of sustainable combustion. Hoperanchite formed in close association with sulfur, mascagnite, (NH₄)₂SO₄, and koktaite, $(NH_4)_2Ca(SO_4)_2 \cdot H_2O_2$, at the vent interface where hot gas mixed with much cooler air. This environment is analogous to the Huron shale fire in Ohio where a landslide of an oil-rich shale unit led to the formation

of non-volcanic fumarole environments and the discovery of the new minerals huizingite-(Al), $[(NH_4)_9(SO_4)_2][Al_3(OH)_2(H_2O)_4(SO_4)_6]$, and carlsonite, $(NH_4)_5Fe_3^{3+}O(SO_4)_6$. 7H₂O (Kampf et al. 2016).

Vargite, MnCu₂Mn₂(OH)₄(H₂O)₄(AsO₄)₂

The new mineral vargite (IMA2020-051, Vg) was described from a historic sample collected at the Långban Mine in Sweden by Swedish miner Erik Gustav Varg (1886–1970) and named in his honor (Langhof et al. 2025). The description of vargite permits the establishment of the akrochordite group comprising vargite, akrochordite, $MnMn_2Mn_2(OH)_4(H_2O)_4(AsO_4)_2$, and guanacoite, $MgCu_2Mg_2(OH)_4(H_2O)_4(AsO_4)_2$. This group of minerals has three independent divalent *M* cation sites forming slabs of *en echelon* ribbons of *MO*₆ octahedra that run parallel to [100] and are linked by AsO₄ tetrahedra. The slabs alternate their orientation along [010] and are linked to each other by hydrogen bonds. Vargite occurs in a brecciated and hydrothermally altered manganese ore and carbonate assemblage and is proposed to have formed during the breakdown of hausmannite ($Mn^{2+}Mn_2^{3+}O_4$) and yarrowite (Cu_9S_8) in the presence of As-rich fluids (Langhof et al. 2025).

Shiranuiite, Cu⁺(Rh³⁺Rh⁴⁺)S₄

Shiranuiite, Cu⁺(Rh³⁺Rh⁴⁺)S₄ (IMA2023-072a, Sir), is a new member of the thiospinel group representing an extremely rare example of a mixed-valence rhodium sulfide (Nishio-Hamane et al. 2024a). It was found in Haraigawa, Kyushu, Japan, occurring within a grain of isoferroplatinum containing associated tulameenite, tetraferroplatinum, and cuprorhodisite. The new mineral's name has a fascinating origin-coming from a legendary tale that traces back to the ancient name of Kumamoto Prefecture in Kyushu, Japan. According to the Nihon Shoki (Chronicles of Japan), Japan's oldest historical record, Emperor Keikō, the 12th emperor, lost his way at sea during a pilgrimage to Kyushu. He was able to reach land safely after spotting a distant fire. When he inquired, "Who lit the fire?" the response was, "It is the fire that no one knows about"-rendered in historical kana orthography as shiranui (不知火), an atmospheric optical phenomenon. This legend led to the region being called the "Land of Fire," now modern-day Kumamoto Prefecture. However, the validity of the mineral has been called into question. Cabri and McDonald (2024) argue that shiranuiite and ezochiite, Cu+(Rh3+Pt4+) S4, are not new minerals, but platinum- and rhodium-rich varieties of cuprorhodsite, $(Cu_{0.5}^+Fe_{0.5}^{3+})Rh_2^{3+}S_4$, on the basis of assumed, rather than empirically measured valence and in the absence of refined structures. Nishio-Hamane et al. (2024a) present a clear distinction between Cu/ (Cu+Fe) compositions for cuprorhodisite (linnaeite subgroup) and shiranuiite (carrollite subgroup) and consider the two immiscible. They conclude that shiranuiite likely forms at a different stage than cuprorhodisite, where Fe depletion and Cu enrichment cause oxidation to Rh4+.

Manuelarossiite, CaPbAlF7

The new fluoride mineral manuelarossiite (IMA2022-097, Mnrs), ideally CaPbAIF₇, was discovered in a fumarole condensate assemblage at Mount Vesuvius in Italy and described by Nestola et al. (2025). The name of the new mineral honors Dr. Manuela Rossi (b. 1977), researcher at the University of Naples and expert on the mineralogy of Mount Vesuvius. Manuelarossiite occurs intimately associated with cerussite and was found at the same vents that have produced specimens of other very rare and unusual halide minerals such as calcioaravaipaite, artroeite, challacolloite, napoliite, and hephaistosite, among others. Manuelarossiite is the third mineral to be discovered here, after sbacchiite (Ca_2AIF_7) and napoliite (Pb_2OFCI). Manuelarossiite has a layered structure comprising a core sheet of CaF_8 polyhedra. The next layers comprise a layer of AIF_6 octahedra on both sides of the CaF_8 polyhedral sheet. The heteropolyhedral sheets are connected to each successive sheet by Pb–F bonds linking Pb atoms adorning the exterior of the AlF₆ octahedral sheet to F atoms in AlF₆ octahedra in the next sheet. Manuelarossiite is a homolog of the closely related mineral calcioaravaipaite, PbCa₂AlF₉, which has a core sheet that is two CaF₈ polyhedra thick. Calcioaravaipaite has otherwise identical topology to manuelarossiite.

Bonacinaite, Sc(AsO₄)·2H₂O

Bonacinaite (IMA2018-056, Bci) is the first scandium arsenate mineral to be described and is one of only 24 approved minerals with essential scandium (Ciriotti et al. 2024). Recent years have seen the description of several new scandium minerals, including scandio-winchite (IMA2022-009), heflikite (IMA2022-139), scandio-fluoro-eckermannite (IMA2024-002), and dubińskaite (IMA2024-035). Most scandium minerals are either silicates or oxides, although there are several scandium phosphates such as kolbeckite, pretulite, and juonniite. Bonacinaite belongs to the metavariscite group, as does its phosphate analog kolbeckite. Bonacinaite was found at the Varenche Mine in the Aosta Valley province of Italy, where it occurs as minute purple tabular crystals in an oxidized manganese deposit (Ciriotti et al. 2024). The new mineral's name honors Italian collector Enrico Bonacina (1928–2024), a prolific mineral macrophotography expert and micromineral collector.

Selenolaurite, RuSe₂

Selenolaurite is a new ruthenium selenide discovered in heavy mineral separates from the Ingul placer occurrence near the city of Chelyabinsk in Chelyabinsk Oblast, Russia (Belogub et al. 2025). At present, there are fewer than 10 approved mineral species with site-defining Ru and no other minerals with both Ru and Se. The new mineral's name conveys the relationship of selenolaurite as the Se analog of laurite (RuS₂). Laurite was described by Friedrich Wöhler in 1866, who named the mineral for his friend's wife: Laura Louisa Henrietta Rupe Joy (1833–1929). Laurite was one of the first two minerals named after a woman (the other being marialite, named in the same year by Gerhard vom Rath). Selenolaurite type material consists of minute grains to about 20 µm occurring alongside Se-rich moncheite [Pt(Te,Bi)₂] within interstices in native osmium crystals (Belogub et al. 2025).

Proxitwelvefoldite, Pd₃Ni₄Te₈

Proxitwelvefoldite (IMA2024-034; Ptw) is a new intermetallic mineral from Kalgoorlie-Boulder, Western Australia, Australia, discovered in a historic specimen within the collections of the Natural History Museum of the University of Florence (Bindi et al. 2025). The mineral is very rare and occurs as micrometer-sized crystals associated with Fe-bearing melonite in a silicate matrix composed of major chlorite and lizardite. Its name is derived from the truncated Latin word proximus, for "near," and to indicate its pseudo-12-fold symmetry. The new mineral belongs to a series of synthetic materials termed "o phases"-hard, brittle, and undesirable components of high-Cr and -Mo steel that have structures based on tetrahedra, termed "tetrahedrally close-packed" (Yackel 1983). Proxitwelvefoldite is the first terrestrial pseudo-dodecagonal quasicrystal approximant, a periodic crystalline solid with a composition close to that of a quasicrystal, and its existence suggests that a dodecagonal quasicrystal may exist in the Pd-Ni-Te system. The find is significant because natural quasicrystals have so far only been described from extraterrestrial samples. The structure of proxitwelvefoldite is tetragonal, P42/mnm, and is composed of metal-metal bonded polyhedra with high coordination numbers (Pd1, Ni, Te = 12; Pd2 = 15; Te2 = 14).

Tarutinoite, Ag₃Pb₇Bi₇S₁₉

Tarutinoite (IMA2023-122; Trtn) is a new ^{7.8}L member of the lillianite homologous series discovered in drill core samples taken in the Tarutinskoe deposit (for which the mineral is named), 9.5 km south of the village of Tarutino, 220 km south of Chelyabinsk, Chelyabinsk Oblast, Russia.

It occurs as anhedral grains in magnetite-calcite matrix associated with andradite, chalcopyrite, and pyrite, and was deposited hydrothermally along with the other ore minerals (Kasatkin et al. 2025). The structure is built from two different galena-like slabs (N = 7 and 8) of complex composition, with mixed (Ag,Bi), (Pb,Ag), (Bi,Pb), and (Pb,Bi) sites. A phase with matching order was previously prepared synthetically by Skowron and Tilley (1990), and tarutinoite now marks the 13th member of the lillianite series.

Miyawakiite-(Y), $\Box Y_4Fe_2(Si_8O_{20})(CO_3)_4(H_2O)_3$

Miyawakiite-(Y) (IMA2024-003; Myw-Y) was described by Nishio-Hamane et al. (2024b) from an abandoned pegmatite mine at Suishoyama in Fukushima Prefecture, Japan. It is found as pale yellow thin plates and columnar crystals in gaps and crevices of allanite-(Y) and britholite-(Y), having formed after their alteration by near-surface waters. The mineral is named in honor of Dr. Ritsuro Miyawaki, a Japanese mineralogist and crystallographer, and director of the Department of Geology and Paleontology at the National Museum of Nature and Science, Japan, for his numerous contributions to descriptive mineralogy and service as CNMNC Chairman from 2018-2022. As Chairman, he reviewed and edited over 500 new mineral proposals and has been involved in the descriptions of 40 new mineral species, including many REE-carbonates. The crystal structure of miyawakiite-(Y) is a novel framework built from Y- and Fe-centered polyhedra connected by triangular CO₃ groups. Their arrangement forms ~square channels that are further lined by SiO₄ tetrahedra in 8-membered rings, creating zeolitic channels that host partially occupied sites for K⁺ and H₂O. Though present in non-defining amounts, K⁺ content leads to the solid solution series $\Box Y_4 Fe_2(Si_8O_{20})$ (CO₃)₄(H₂O)₃-KY₄Fe₂(Si₈O₂₀)(CO₃)₄[(H₂O)₂(OH)], and general formula $K_x Y_4 Fe_2(Si_8O_{20})(CO_3)_4[(H_2O)_{3-x}(OH)_x]$ where $0 \le x \le 0.5$.

Ehrigite, Bi₈Te₃

Ehrigite (IMA2023-074; Ehg) is a new bismuth telluride mineral within the tetradymite group. The new mineral occurs as <100 µm grains within hedenbergite at the Good Hope Mine in British Columbia, Canada (Ciobanu et al. 2024). Ehrigite was the first bismuth telluride mineral described since tsumoite (BiTe) was approved in 1972. However, since 2024 saw the approval of the new mineral dulangguoite (Bi₆Te₃; IMA2024-067), there are now six minerals containing only Bi and Te as essential elements (all are members of the tetradymite group). Ciobanu et al. (2024) utilized the technique of high-angle annular dark-field scanning transmission electron microscopy to visualize the structure of ehrigite. The high-resolution imaging was used to validate the predicted structure modeled using density functional theory with a structure relaxation approach incorporating measured structure parameters. Ehrigite is a member of the tetradymite homologous series, whose structures are formed from the expansion of the tetradymite-type slab. In ehrigite, there is a central five-atom Bi-Te sequence of Te-Bi-Te-Bi-Te with three more Bi atoms on each end to form an 11-atom expanded sequence (Ciobanu et al. 2024).

Zheshengite, Pb₄ZnZn₂(AsO₄)₂(PO₄)₂(OH)₂

Zheshengite (IMA2022-011; Zh), a new member of the dongchuanite group, was named in honor of Chinese mineralogist Zhesheng Ma (b. 1937), former professor at the China University of Geosciences in Beijing (Sun et al. 2024). She has conducted a number of mineralogical studies of the Dongchuan Copper ore field and described the tyrolite-like mineral tangdanite, $Ca_2Cu_9(AsO_4)_4(SO_4)_{0.5}(OH)_9 \cdot 9H_2O$, from that locality. The dongchuanite group minerals, which also include dongchuanite, cuprodongchuanite, and cuprozheshengite, have framework structures built from heteropolyhedral chains of corner-sharing tetrahedra interlaced with octahedra. Their general formula is given as $A_4^{VI}B^{IV}B_2(XIO_4)_2(X_2O_4)_2(OH)_2$, where A = Pb; $^{VI}B = Zn$, Cu; $^{IV}B = Zn$, Cu; and X1 and X2 = P or As. Minerals with X1 and X2 = As have not yet been described.

MINERALS BELONGING TO ESTABLISHED NOMENCLATURE SYSTEMS

The recently published minerals gysinite-(Ce), hydroxylbastnäsite-(La), nioboixiolite-(\Box), and parisite-(Nd) belong to established nomenclature systems. Gysinite-(Ce) is the Ce analog of gysinite-(Nd) and gysinite-(La) and belongs to the ancylite supergroup (Kampf et al. 2024). Hydroxylbastnäsite-(La) is a new end-member of the bastnäsite group and is the La analog of hydroxylbastnäsite-(Ce) and hydroxylbastnäsite-(Nd) (Pekov et al. 2025). Nioboixiolite-(\Box) is a new end-member within the columbite supergroup and is a vacancy (keno) analog of nioboixiolite-(Mn²⁺) and the recently approved nioboixiolite-(Fe³⁺) (Li et al. 2025). The new member of the parisite group, parisite-(Nd), is the Nd analog of parisite-(Ce) and parisite-(La) (Fan et al. 2025).

RECENT NOMENCLATURE CHANGES

Following the approval of the new mineral svornostite-(NH₄), the svornostite group has been established. It includes two subgroups: (1) the svornostite subgroup with general formula $A_2^{+}M^{2+}(UO_2)_2(SO_4)_4(H_2O)_8$ and (2) the rietveldite subgroup with general formula $M^{2+}(UO_2)_2(SO_4)_4(H_2O)_{10}$, for $M_2^{2+}(UO_2)_2(SO_4)_4(H_2O)_{10}$, where A is the dominant large monovalent cation and M is the dominant octahedrally coordinated divalent cation. The previously described minerals svornostite and oldsite have received Levinson modifiers and were renamed svornostite-(K) and oldsite-(K), respectively. The members of the svornostite subgroup are thus svornostite-(K), svornostite-(NH₄), and oldsite-(K). The members of the rietveldite subgroup are rietveldite and zincorietveldite. No minerals were discredited in the period September 2024–January 2025. Of final note, the IMA-CNMNC has voted to raise the proposal approval threshold from a simple $\frac{2}{3}$ majority to a $\frac{3}{4}$ majority vote.

REFERENCES CITED

- Belogub, E.V., Britvin, S.N., Shilovskikh, V.V., Pautov, L.A., Kotlyarov, V.A., Krzhizhanovskaya, M.G., Novoselov, K.A., Zaykova, E.V., and Blinov, I.A. (2025) Selenolaurite, RuSe₂, a new mineral from the Ingul gold placer, South Urals, Russia. Mineralogical Magazine, in press, 1–33, https://doi.org/10.1180/ mgm.2024.89.
- Biagioni, C., Mugnaioli, E., Lorenzon, S., Mauro, D., Musetti, S., Sejkora, J., Belmonte, D., Demitri, N., and Dolniček, Z. (2024) Nannoniite, Al₄(OH), F, a new mineral from the Cetine di Cotorniano mine (Tuscany, Italy). European Journal of Mineralogy, 36(6), 1011–1022, https://doi.org/10.5194/ejm-36-1011-2024.
- Biagioni, C., Mauro, D., Sejkora, J., Dolníček, Z., Dini, A., and Škoda, R. (2025) Dacostaite, K(Mg₂Al)[Mg(H₂O)₆]₂(AsO₄)₂F₆·2H₂O, a new fluoride–arsenate mineral from the Cetine di Cotorniano Mine (Tuscany, Italy). European Journal of Mineralogy, 37(1), 39–52, https://doi.org/10.5194/ejm-37-39-2025.
- Bindi, L., Cabri, L.J., Mihalkovič, M., Laufek, F., and Krivovichev, S.V. (2025) Discovery of an Earthborn quasicrystal approximant. American Mineralogist, in press, https://doi.org/10.2138/am-2024-9679.
- Bosi, F., Hatert, F., Pasero, M., and Mills, S.J. (2024a) IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) – Newsletter 77. European Journal of Mineralogy, 88, 203–209, https://doi.org/10.1180/mgm.2024.5.
 (2024b) IMA Commission on New Minerals, Nomenclature and Clascifection (CNMNC). Newsletter 78. European Lower of Mineralogy, 2010.
 - sification (CNMNC) Newsletter 78. European Journal of Mineralogy, 36, 361–367, https://doi.org/10.5194/ejm-36-361-2024. — (2024c) IMA Commission on New Minerals, Nomenclature and Clas-
- sification (CNMNC) Newsletter 79. European Journal of Mineralogy, 36, 525–528, https://doi.org/10.5194/ejm-36-525-2024.
- (2024d) IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) – Newsletter 80. European Journal of Mineralogy, 36, 599–604, https://doi.org/10.5194/ejm-36-599-2024.
- (2024e) IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) Newsletter 81. European Journal of Mineralogy, 36, 917–923, https://doi.org/10.5194/ejm-36-917-2024.
- (2024f) IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) – Newsletter 82. European Journal of Mineralogy, 36, 1005–1010, https://doi.org/10.5194/ejm-36-1005-2024.
- (2025) IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) – Newsletter 83. European Journal of Mineralogy, https://doi. org/10.1180/mgm.2025.7.

- Cabri, L.J. and McDonald, A.M. (2024) Ezochiite and shiranuiite = cuprorhodsite and are not new mineral species. American Mineralogist, in press, https://doi. org/10.2138/am-2024-9517.
- Ciobanu, C.L., Cook, N.J., Yao, J., Slattery, A., Wade, B., and Dima, G.I. (2024) Ehrigite, Bi₈Te₃, a new member of the tetradymite group. The Canadian Journal of Mineralogy and Petrology, 62(6), 847–861.
- Ciriotti, M.E., Kolitsch, U., Cámara, F., Vignola, P., Hatert, F., Bittarello, E., Bracco, R., and Bortolozzi, G.M. (2024) Bonacinaite, Sc(AsO₄) 2H₂O, the first scandium arsenate. European Journal of Mineralogy, 36(5), 863–872, https://doi.org/10.5194/ejm-36-863-2024.
- Deen, J.A. and Atkinson, W.W. (1988) Volcanic stratigraphy and ore deposits of the Moctezuma District, Sonora, Mexico. Economic Geology, 83(8), 1841–1855.
- Fan, C., Yu, H., Gu, X., Zeng, P., and Chen, Z. (2025) Parisite-(Nd), ideally CaNd₂(CO₃)_{5²}, a new mineral from Bayan Obo Fe-Nb-REE deposit, Inner Mongolia, China. Mineralogical Magazine, in press, 1–26, https://doi. org/10.1180/mgm.2024.90.
- Fejfarová, K., Plášil, J., Yang, H., Čejka, J., Dušek, M., Downs, R.T., Barkley, M.C., and Škoda, R.Š. (2012) Revision of the crystal structure and chemical formula of weeksite, K₂(UO₂)₂(Si₅O₁₃)·4H₂O. American Mineralogist, 97(4), 750–754, https://doi.org/10.2138/am.2012.4025.
- Jackson, J.M. and Burns, P.C. (2001) A re-evaluation of the structure of weeksite, a uranyl silicate framework mineral. Canadian Mineralogist, 39, 187–195, https://doi.org/10.2113/gscanmin.39.1.187.
- Jambor, J.L., Sabina, A.P., Ramik, R.A., and Sturman, B.D. (1990) A fluorinebearing gibbsite-like mineral from the Francon Quarry, Montreal, Quebec. Canadian Mineralogist, 28, 147–153.
- Juroszek, R., Prusik, K., and Schafer, C. (2024) Alfredcasparite, Sr₂TiO(Si₂O₇), a new mineral from the Caspar quarry, Bellerberg volcano, Germany, and new data on wesselsite, SrCuSi₄O₁₀. Journal of Geosciences, 69(3), 161–172, https:// doi.org/10.3190/jgeosci.394.
- Kampf, A.R., Richards, R.P., Nash, B.P., Murowchick, J.B., and Rakovan, J.F. (2016) Carlsonite, (NH₄)₅Fe³·O(SO₄)₆.7H₂O, and huizingite-(Al), (NH₄)₉Al₃(SO₄)₈(OH)₂·4H₂O, two new minerals from a natural fire in an oilbearing shale near Milan, Obio. American Mineralogist, 101(9), 2095–2107, https://doi.org/10.2138/am-2016-5680.
- Kampf, A.R., Hughes, J.M., Nash, B.P., and Marty, J. (2022) Nitroplumbite, [Pb₄(OH)₄](NO₃)₄, a new mineral with cubane-like [Pb₄(OH)₄]⁴⁺ clusters from the Burro Mine, San Miguel County, Colorado, USA. Canadian Mineralogist, 60(5), 787–795, https://doi.org/10.3749/canmin.2200009.
- Kampf, A.R., Möhn, G., Ma, C., Désor, J., and Gro
 ß, M. (2024) Gysinite-(Ce), PbCe(CO₃)₂(OH)(H₂O), a new member of the ancylite group. The Canadian Journal of Mineralogy and Petrology, 62(6), 863–870, https://doi. org/10.3749/2400015.
- Kampf, A.R., Désor, J., Welch, M.D., Ma, C., and Möhn, G. (2025a) Zincostottite, ZnGe(OH)₆, the zinc analog of stottite from Tsumeb, Namibia. Mineralogical Magazine, in press, 1–17, https://doi.org/10.1180/mgm.2024.81.
- Kampf, A.R., Olds, T.A., Ma, C., and Marty, J. (2025b) Yellowcatite, KNaFe³⁺(Se⁴⁺O₃)₂(V⁴⁺O₇)·7H₂O, the first selenite-vanadate. Mineralogical Magazine, in press, 1–19, https://doi.org/10.1180/mgm.2024.107.
- Kampf, A.R., Adams, P.M., Ma, C., and Lynch, D.K. (2025c) Hoperanchite, (NH₄)₂(S₂O₃), a new mineral from an active vent in a burning bituminous shale. American Mineralogist, in press, https://doi.org/10.2138/am-2024-9625.
- Kasatkin, A.V., Biagioni, C., Nestola, F., Škoda, R., Gurzhiy, V.V., Agakhanov, A.A., and Kuznetsov, A.M. (2025) Tarutinoite, Ag.Pb7Bi7S19, a new member of the lillianite homologous series from the Tarutinskoe copper-skarn deposit,

Southern Urals, Russia. Mineralogical Magazine, in press, 1–20, https://doi. org/10.1180/mgm.2025.1.

- Langhof, J., Holtstam, D., Bindi, L., Karlsson, A., and Jonsson, E. (2025) Introducing the akrochordite mineral group, with the new mineral vargite from the Långban Mn-Fe deposit, Filipstad, Värmland, Sweden. GFF, 1–8, https://doi. org/10.1080/11035897.2024.2391277.
- Li, Y., Ke, C., Wang, D., Peng, Z., Zhao, Y., Li, R., Chen, Z., Li, G., Yu, H., Zhang, L., and Guo, B. (2025) Nioboixiolite-(□), (Nb_{0.8}□_{0.2})⁴⁺O₂, a new mineral species from the Bayan Obo world-class REE-Fe-Nb deposit, Inner Mongolia, China. Minerals, 15(1), 88, https://doi.org/10.3390/min15010088.
- Mahdy, N.M., Ondrejka, M., Bačík, P., Biagioni, C., Sejkora, J., Uher, P., Števko, M., Förster, H.J. and Mikuš, T. (2025) Marsaalamite-(Y), Y(MoO₄)OH, a new molybdate mineral from the Um Safi area, Marsa Alam District, Central Eastern Desert of Egypt. Mineralogical Magazine, in press, 1–30, https://doi. org/10.1180/mgm.2024.103.
- Mandarino, J.A., Williams, S.J., and Mitchell, R.S. (1963) Denningite, a new tellurite mineral from Moctezuma, Sonora, Mexico. Canadian Mineralogist, 7(3), 443–452.
- Nestola, F., Kasatkin, A.V., Biagioni, C., Gurzhiy, V.V., Škoda, R., Santello, L., and Agakhanov, A.A. (2025) Manuelarossiite, CaPbAIF₇, a new fluoride from the Vesuvius volcano, Italy. Mineralogical Magazine, in press 1–20, https:// doi.org/10.1180/mgm.2024.59.
- Nishio-Hamane, D., Tanaka, T., and Shinmachi, T. (2024a) Shiranuiite, Cu⁺(Rh³⁺Rh⁴⁺)S₄, a new mineral in the thiospinel group from Kumamoto, Japan. Journal of Mineralogical and Petrological Sciences, 119(1), 1–9, https://doi. org/10.2465/jmps.240529.
- Olds, T. A. and Emproto, C. (2024) New Mineral Names. American Mineralogist, 109(4), 799–802, https://doi.org/10.2138/am-2024-NMN10949.
- Pekov, I.V., Zubkova, N.V., Kasatkin, A.V., Chukanov, N.V., Koshlyakova, N.N., Ksenofontov, D.A., Škoda, R., Britvin, S.N., Kirillov, A.S., Zaitsev, A.N., and Kuznetsov, A.M. (2025) Hydroxylbastnäsite-(La), an "old new" bastnäsite-group mineral. Mineralogical Magazine, in press, 1–28, https:// doi.org/10.1180/mgm.2024.65.
- Sabina, A.P., Jambor, J.L., and Plant, A.G. (1968) Weloganite, a new strontium zirconium carbonate from Montreal Island, Canada. Canadian Mineralogist, 9(4), 468–477.
- Skowron, A. and Tilley, R.J.D. (1990) Chemically twinned phases in the Ag₂S-PbS-Bi₂S₃ system. Part I. Electron microscope study. Journal of Solid State Chemistry, 85(2), 235–250, https://doi.org/10.1016/S0022-4596(05)80080-5.
- Sokolova, E., Cámara, F., Hawthorne, F.C., Della Ventura, G., and Bernardin, S. (2025) Ferroinnelite, Ba₄Ti₂Na(NaFe²⁺)Ti(Si₂O₇)₂[(SO₄)(PO₄)]O₂[O(OH)], a new mineral of the lamprophyllite group (seidozerite supergroup) from the Kovdor alkaline massif, Kola Peninsula, Russia: description and crystal structure and new data for innelite, Ba₄Ti₂Na(NaMn²⁺)Ti(Si₂O₇)₂[(SO₄)(PO₄)] O₂[O(OH)]. Mineralogical Magazine, in press, 1–31, https://doi.org/10.1180/ mgm.2024.96.
- Sun, N., Li, G., Xue, Y., Shen, H., and Hao, J. (2024) Zheshengite, Pb₄ZnZn₂(AsO₄)₂(PO₄)₂(OH)₂: A new mineral of the Dongchuanite Group and the influence of As–P isomorphic substitution on unit-cell parameters of Dongchuanite Group Minerals. Minerals, 14(12), 1276, https://doi.org/10.3390/min14121276.